Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-26736267

RESUMEN

Non-invasive ultrasound imaging of carotid plaques can provide information on the characteristics of the arterial wall including the size, morphology and texture of the atherosclerotic plaques. Several studies were carried out that demonstrated the usefulness of these feature sets for differentiating between asymptomatic and symptomatic plaques and their corresponding cerebrovascular risk stratification. The aim of this study was to develop predictive modelling for estimating the time period of a stroke event by determining the risk for short term (less or equal to three years) or long term (more than three years) events. Data from 108 patients that had a stroke event have been used. The information collected included clinical and ultrasound imaging data. The prediction was performed at base line where patients were still asymptomatic. Several image texture analysis and clinical features were used in order to create a classification model. The different features were statistically analyzed and we conclude that image texture analysis features extracted using Spatial Gray Level Dependencies method had the best statistical significance. Several predictive models were derived based on Binary Logistic Regression (BLR) and Support Vector Machines (SVM) modelling. The best results were obtained with the SVM modelling models with an average correct classifications score of 77±7% for differentiating between stroke event occurrences within 3 years versus more than 3 years. Further work is needed in investigating additional multiscale texture analysis features as well as more modelling techniques on more subjects.


Asunto(s)
Arterias Carótidas/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico , Ultrasonografía/métodos , Arterias Carótidas/patología , Humanos , Isquemia/diagnóstico , Isquemia/diagnóstico por imagen , Modelos Logísticos , Placa Aterosclerótica/complicaciones , Factores de Riesgo , Sensibilidad y Especificidad , Accidente Cerebrovascular/etiología , Máquina de Vectores de Soporte , Factores de Tiempo
2.
J Neuroradiol ; 42(2): 99-114, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24970463

RESUMEN

INTRODUCTION: This study investigates the application of texture analysis methods on brain T2-white matter lesions detected with magnetic resonance imaging (MRI) for the prognosis of future disability in subjects diagnosed with clinical isolated syndrome (CIS) of multiple sclerosis (MS). METHODS: Brain lesions and normal appearing white matter (NAWM) from 38 symptomatic untreated subjects diagnosed with CIS as well as normal white matter (NWM) from 20 healthy volunteers, were manually segmented, by an experienced MS neurologist, on transverse T2-weighted images obtained from serial brain MR imaging scans (0 and 6-12 months). Additional clinical information in the form of the Expanded Disability Status Scale (EDSS), a scale from 0 to 10, which provides a way of quantifying disability in MS and monitoring the changes over time in the level of disability, were also provided. Shape and most importantly different texture features including GLCM and laws were then extracted for all above regions, after image intensity normalization. RESULTS: The findings showed that: (i) there were significant differences for the texture futures extracted between the NAWM and lesions at 0 month and between NAWM and lesions at 6-12 months. However, no significant differences were found for all texture features extracted when comparing lesions temporally at 0 and 6-12 months with the exception of contrast (gray level difference statistics-GLDS) and difference entropy (spatial gray level dependence matrix-SGLDM); (ii) significant differences were found between NWM and NAWM for most of the texture features investigated in this study; (iii) there were significant differences found for the lesion texture features at 0 month for those with EDSS≤2 versus those with EDSS>2 (mean, median, inverse difference moment and sum average) and for the lesion texture features at 6-12 months with EDSS>2 and EDSS≤2 for the texture features (mean, median, entropy and sum average). It should be noted that whilst there were no differences in entropy at time 0 between the two groups, significant change was observed at 6-12 months, relating the corresponding features to the follow-up and disability (EDSS) progression. For the NAWM, significant differences were found between 0 month and 6-12 months with EDSS≤2 (contrast, inverse difference moment), for 6-12 months for EDSS>2 and 0 month with EDSS>2 (difference entropy) and for 6-12 months for EDSS>2 and EDSS≤2 (sum average); (iv) there was no significant difference for NAWM and the lesion texture features (for both 0 and 6-12 months) for subjects with no change in EDSS score versus subjects with increased EDSS score from 2 to 5 years. CONCLUSIONS: The findings of this study provide evidence that texture features of T2 MRI brain white matter lesions may have an additional potential role in the clinical evaluation of MRI images in MS and perhaps may provide some prognostic evidence in relation to future disability of patients. However, a larger scale study is needed to establish the application in clinical practice and for computing shape and texture features that may provide information for better and earlier differentiation between normal brain tissue and MS lesions.


Asunto(s)
Enfermedades Desmielinizantes/patología , Imagen de Difusión Tensora/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Esclerosis Múltiple/patología , Sustancia Blanca/patología , Adulto , Algoritmos , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Reconocimiento de Normas Patrones Automatizadas/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
Int J Biomed Imaging ; 2014: 518414, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24734038

RESUMEN

The intima-media thickness (IMT) of the common carotid artery (CCA) is widely used as an early indicator of cardiovascular disease (CVD). Typically, the IMT grows with age and this is used as a sign of increased risk of CVD. Beyond thickness, there is also clinical interest in identifying how the composition and texture of the intima-media complex (IMC) changed and how these textural changes grow into atherosclerotic plaques that can cause stroke. Clearly though texture analysis of ultrasound images can be greatly affected by speckle noise, our goal here is to develop effective despeckle noise methods that can recover image texture associated with increased rates of atherosclerosis disease. In this study, we perform a comparative evaluation of several despeckle filtering methods, on 100 ultrasound images of the CCA, based on the extracted multiscale Amplitude-Modulation Frequency-Modulation (AM-FM) texture features and visual image quality assessment by two clinical experts. Texture features were extracted from the automatically segmented IMC for three different age groups. The despeckle filters hybrid median and the homogeneous mask area filter showed the best performance by improving the class separation between the three age groups and also yielded significantly improved image quality.

4.
Int J Telemed Appl ; 2013: 457491, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23573082

RESUMEN

An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings.

5.
Artículo en Inglés | MEDLINE | ID: mdl-23365830

RESUMEN

The degree of stenosis of the common carotid artery (CCA) but also the characteristics of the arterial wall including plaque size, composition and elasticity represent important predictors used in the assessment of the risk for future cardiovascular events. This paper proposes and evaluates an integrated system for the segmentation of atherosclerotic carotid plaque in ultrasound video of the CCA based on normalization, speckle reduction filtering (with the hybrid median filter) and parametric active contours. The algorithm is initialized in the first video frame of the cardiac cycle with human assistance and the moving atherosclerotic plaque borders are tracked and segmented in the subsequent frames. The algorithm is evaluated on 10 real CCA digitized videos from B-mode longitudinal ultrasound segments and is compared with the manual segmentations of an expert, for every 20 frames in a time span of 3-5 seconds, covering in general 2 cardiac cycles. The segmentation results are very satisfactory with a true negative fraction (TNF) of 79.3%, a true-positive fraction (TPF) of 78.12%, a false-positive fraction (FPF) of 6.7% and a false-negative fraction (FNF) of 19.6% between the ground truth and the presented plaque segmentations, a Williams index (KI) of 80.3%, an overlap index of 71.5%, a specificity of 0.88±0.09, a precision of 0.86±0.10 and an effectiveness measure of 0.77±0.09. The results show that integrated system investigated in this study could be successfully used for the automated video segmentation of the carotid plaque.


Asunto(s)
Enfermedades de las Arterias Carótidas , Arteria Carótida Común , Procesamiento de Imagen Asistido por Computador/métodos , Placa Aterosclerótica , Grabación en Video/métodos , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/fisiopatología , Arteria Carótida Común/diagnóstico por imagen , Arteria Carótida Común/fisiopatología , Femenino , Humanos , Masculino , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/fisiopatología , Ultrasonografía
6.
Int Angiol ; 30(3): 227-41, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21617606

RESUMEN

AIM: In this work we present a novel methodology (called CALSFOAM) for the automated segmentation of ultrasound carotid images and intima-media thickness (IMT) measurement. CALSFOAM was developed in order to overcome limitations of a previously developed snake-based technique. METHODS: CALSFOAM consists of two stages: Stage-I is an automatic recognition of the carotid artery system in an image frame and Stage-II is a combination of segmentation and IMT measurement sub-system. Stage-I is performed by using local statistics and by automatically tracing the profile of the distal adventitia. Stage-II takes the traced adventitia boundary and builds an ROI for distal wall segmentation that uses a first order absolute moment (FOAM) technique. CALSFOAM was benchmarked against our previous snake based technique and validated on a 300-image multi-institutional dataset. RESULTS: CALSFOAM's lumen-intima (LI) segmentation error was 0.049±0.039 mm, the media-adventitia (MA) error was 0.088±0.054 mm; the IMT measurement bias was 0.125±0.103 mm. To reduce CALSFOAM error, we adopted a GREEDY approach for fusing the boundaries from the two techniques and obtained LI and MA errors equal to 0.02±0.014 mm, 0.023±0.013 mm, and an IMT bias of 0.074±0.068 mm. CONCLUSION: Even though CALSFOAM's performance was lower than snake-based segmentation techniques, it helped in avoiding possible inaccuracies of snakes and its parameter sensitivities. The very accurate performance obtained by the GREEDY approach demonstrated that the two techniques could be considered as complementary.


Asunto(s)
Automatización de Laboratorios , Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Modelos Estadísticos , Procesamiento de Señales Asistido por Computador , Túnica Íntima/diagnóstico por imagen , Túnica Media/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Benchmarking , Bases de Datos como Asunto , Europa (Continente) , Humanos , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Ultrasonografía , Estados Unidos
7.
IEEE Trans Inf Technol Biomed ; 15(3): 387-97, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21233053

RESUMEN

We propose a unifying framework for efficient encoding, transmission, and quality assessment of atherosclerotic plaque ultrasound video. The approach is based on a spatially varying encoding scheme, where video-slice quantization parameters are varied as a function of diagnostic significance. Video slices are automatically set based on a segmentation algorithm. They are then encoded using a modified version of H.264/AVC flexible macroblock ordering (FMO) technique that allows variable quality slice encoding and redundant slices (RSs) for resilience over error-prone transmission channels. We evaluate our scheme on a representative collection of ten ultrasound videos of the carotid artery for packet loss rates up to 30%. Extensive simulations incorporating three FMO encoding methods, different quantization parameters, and different packet loss scenarios are investigated. Quality assessment is based on a new clinical rating system that provides independent evaluations of the different parts of the video (subjective). We also use objective video-quality assessment metrics and estimate their correlation to the clinical quality assessment of plaque type. We find that some objective quality assessment measures computed over the plaque video slices gave very good correlations to mean opinion scores (MOSs). Here, MOSs were computed using two medical experts. Experimental results show that the proposed method achieves enhanced performance in noisy environments, while at the same time achieving significant bandwidth demands reductions, providing transmission over 3G (and beyond) wireless networks.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Placa Aterosclerótica/diagnóstico por imagen , Telemedicina/métodos , Ultrasonografía Intervencional/métodos , Arterias Carótidas/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Telemedicina/normas , Ultrasonografía Intervencional/normas
8.
IEEE Trans Inf Technol Biomed ; 15(2): 178-88, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20889436

RESUMEN

The intima-media thickness (IMT) of the common carotid artery (CCA) is widely used as an early indicator of cardiovascular disease (CVD). Clinically, there is strong interest in identifying how the composition and texture of the media layer (ML) can be associated with the risk of stroke. In this study, we use 2-D amplitude-modulation frequency-modulation (AM-FM) analysis of the intima-media complex (IMC), the ML, and intima layer (IL) of the CCA to detect texture changes as a function of age and sex. The study was performed on 100 ultrasound images acquired from asymptomatic subjects at risk of atherosclerosis. To investigate texture variations associated with age, we separated them into three age groups: 1) patients younger than 50; 2) patients aged between 50 and 60 years old; and 3) patients over 60 years old. We also separated the patients by sex. The IMC, ML, and IL were segmented manually by a neurovascular expert and also by a snake-based segmentation system. To reject strong edge artifacts, we prefilter with an AM-FM filterbank that is centered along the horizontal frequency axis (parallel to the long axis of the IMC, ML, and IL), while removing the low-pass filter estimates and frequency bands with large, vertical frequency components. To investigate significant texture changes, we extract the instantaneous amplitude (IA) and the magnitude of the instantaneous frequency (IF) over each layer component, for low-, medium-, and high-frequency AM-FM components. We detected significant texture differences between the higher risk age group of >60 years versus the lower risk age group of <50 and the 50-60 group. In particular, between the <50 and >60 groups, we found significant differences in the medium-scale IA extracted from the IMC. Between the >60 and the 50-60 groups, we found significant texture changes in the low-scale IA and high-scale IF magnitude extracted from the IMC, and the low-scale IA extracted from the IL. Also, we noted that the IA for the ML showed significant differences between males and females for all age groups. The AM--FM features provide complimentary information to classical texture analysis features like the gray-scale median, contrast, and coarseness. These findings provide evidence that AM--FM texture features can be associated with the progression of cardiovascular risk for disease and the risk of stroke with age. However, a larger scale study is needed to establish the application in clinical practice.


Asunto(s)
Arterias Carótidas/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Túnica Íntima/diagnóstico por imagen , Ultrasonografía/métodos , Adulto , Factores de Edad , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores Sexuales
9.
IEEE Trans Inf Technol Biomed ; 15(1): 119-29, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21062681

RESUMEN

This study introduces the use of multiscale amplitude modulation-frequency modulation (AM-FM) texture analysis of multiple sclerosis (MS) using magnetic resonance (MR) images from brain. Clinically, there is interest in identifying potential associations between lesion texture and disease progression, and in relating texture features with relevant clinical indexes, such as the expanded disability status scale (EDSS). This longitudinal study explores the application of 2-D AM-FM analysis of brain white matter MS lesions to quantify and monitor disease load. To this end, MS lesions and normal-appearing white matter (NAWM) from MS patients, as well as normal white matter (NWM) from healthy volunteers, were segmented on transverse T2-weighted images obtained from serial brain MR imaging (MRI) scans (0 and 6-12 months). The instantaneous amplitude (IA), the magnitude of the instantaneous frequency (IF), and the IF angle were extracted from each segmented region at different scales. The findings suggest that AM-FM characteristics succeed in differentiating 1) between NWM and lesions; 2) between NAWM and lesions; and 3) between NWM and NAWM. A support vector machine (SVM) classifier succeeded in differentiating between patients that, two years after the initial MRI scan, acquired an EDSS ≤ 2 from those with EDSS > 2 (correct classification rate = 86%). The best classification results were obtained from including the combination of the low-scale IA and IF magnitude with the medium-scale IA. The AM-FM features provide complementary information to classical texture analysis features like the gray-scale median, contrast, and coarseness. The findings of this study provide evidence that AM-FM features may have a potential role as surrogate markers of lesion load in MS.


Asunto(s)
Encéfalo/patología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Adulto , Algoritmos , Área Bajo la Curva , Inteligencia Artificial , Femenino , Humanos , Masculino , Estadísticas no Paramétricas
10.
Artículo en Inglés | MEDLINE | ID: mdl-19964858

RESUMEN

In this paper we define diagnostic Regions of Interest (ROIs) for carotid ultrasound medical video, which we then use as input for Flexible Macroblock Ordering (FMO) slice encoding. We extend the FMO concept by enabling variable quality slice encoding, tightly coupled by each region's diagnostic importance. Redundant Slices (RS) utilization increases compressed video's resilience over error prone transmission mediums. We evaluate our scheme on a series of five (5) carotid ultrasound videos at QCIF and CIF resolutions, for packet loss rates up to 30%. Quality assessment based on a clinical rating system that provides for independent evaluations of the different parts of the video (subjective), as well as PSNR ratings (objective), shows that encoded videos attain enhanced diagnostic performance under noisy environments, while at the same time achieving significant bandwidth demands reductions.


Asunto(s)
Artefactos , Ultrasonografía/instrumentación , Grabación en Video/instrumentación , Arterias Carótidas/diagnóstico por imagen , Electrocardiografía , Estudios de Evaluación como Asunto , Humanos , Docilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA