Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Arthritis Rheumatol ; 76(4): 620-630, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37975161

RESUMEN

OBJECTIVE: The etiopathogenesis of systemic sclerosis (SSc) is unknown. Platelet-derived growth factor receptors (PDGFRs) are overexpressed in patients with SSc. Because PDGFRα is targeted by the adeno-associated virus type 5 (AAV5), we investigated whether AAV5 forms a complex with PDGFRα exposing epitopes that may induce the immune responses to the virus-PDGFRα complex. METHODS: The binding of monomeric human PDGFRα to the AAV5 capsid was analyzed by in silico molecular docking, surface plasmon resonance (SPR), and genome editing of the PDGFRα locus. AAV5 was detected in SSc lungs by in situ hybridization, immunohistochemistry, confocal microscopy, and molecular analysis of bronchoalveolar lavage (BAL) fluid. Immune responses to AAV5 and PDGFRα were evaluated by SPR using SSc monoclonal anti-PDGFRα antibodies and immunoaffinity-purified anti-PDGFRα antibodies from sera of patients with SSc. RESULTS: AAV5 was detected in the BAL fluid of 41 of 66 patients with SSc with interstitial lung disease (62.1%) and in 17 of 66 controls (25.75%) (P < 0.001). In SSc lungs, AAV5 localized in type II pneumocytes and in interstitial cells. A molecular complex formed of spatially contiguous epitopes of the AAV5 capsid and of PDGFRα was identified and characterized. In silico molecular docking analysis and binding to the agonistic anti-PDGFRα antibodies identified spatially contiguous epitopes derived from PDGFRα and AAV5 that interacted with SSc agonistic antibodies to PDGFRα. These peptides were also able to bind total IgG isolated from patients with SSc, not from healthy controls. CONCLUSION: These data link AVV5 with the immune reactivity to endogenous antigens in SSc and provide a novel element in the pathogenesis of SSc.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Esclerodermia Sistémica , Humanos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Epítopos , Dependovirus/metabolismo , Autoanticuerpos , Simulación del Acoplamiento Molecular , Esclerodermia Sistémica/patología , Péptidos , Pulmón/patología
2.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37628728

RESUMEN

Systemic sclerosis, also known as scleroderma or SSc, is a condition characterized by significant heterogeneity in clinical presentation, disease progression, and response to treatment. Consequently, the design of clinical trials to successfully identify effective therapeutic interventions poses a major challenge. Recent advancements in skin molecular profiling technologies and stratification techniques have enabled the identification of patient subgroups that may be relevant for personalized treatment approaches. This narrative review aims at providing an overview of the current status of skin gene expression analysis using computational biology approaches and highlights the benefits of stratifying patients upon their skin gene signatures. Such stratification has the potential to lead toward a precision medicine approach in the management of SSc.


Asunto(s)
Medicina de Precisión , Esclerodermia Sistémica , Humanos , Transcriptoma , Piel , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/terapia , Perfilación de la Expresión Génica
3.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298573

RESUMEN

The platelet-derived growth factor receptor (PDGFR) is a membrane tyrosine kinase receptor involved in several metabolic pathways, not only physiological but also pathological, as in tumor progression, immune-mediated diseases, and viral diseases. Considering this macromolecule as a druggable target for modulation/inhibition of these conditions, the aim of this work was to find new ligands or new information to design novel effective drugs. We performed an initial interaction screening with the human intracellular PDGFRα of about 7200 drugs and natural compounds contained in 5 independent databases/libraries implemented in the MTiOpenScreen web server. After the selection of 27 compounds, a structural analysis of the obtained complexes was performed. Three-dimensional quantitative structure-activity relationship (3D-QSAR) and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses were also performed to understand the physicochemical properties of identified compounds to increase affinity and selectivity for PDGFRα. Among these 27 compounds, the drugs Bafetinib, Radotinib, Flumatinib, and Imatinib showed higher affinity for this tyrosine kinase receptor, lying in the nanomolar order, while the natural products included in this group, such as curcumin, luteolin, and epigallocatechin gallate (EGCG), showed sub-micromolar affinities. Although experimental studies are mandatory to fully understand the mechanisms behind PDGFRα inhibitors, the structural information obtained through this study could provide useful insight into the future development of more effective and targeted treatments for PDGFRα-related diseases, such as cancer and fibrosis.


Asunto(s)
Neoplasias , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Humanos , Simulación del Acoplamiento Molecular , Modelos Moleculares , Mesilato de Imatinib/farmacología , Relación Estructura-Actividad Cuantitativa
4.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35409263

RESUMEN

Systemic sclerosis (SSc) is a clinically heterogeneous disorder of the connective tissue characterized by vascular alterations, immune/inflammatory manifestations, and organ fibrosis. SSc pathogenesis is complex and still poorly understood. Therefore, effective therapies are lacking and remain nonspecific and limited to disease symptoms. In the last few years, many molecular and cellular mediators of SSc fibrosis have been described, providing new potential options for targeted therapies. In this review: (i) we focused on the PDGF/PDGFR pathway as key signaling molecules in the development of tissue fibrosis; (ii) we highlighted the possible role of stimulatory anti-PDGFRα autoantibodies in the pathogenesis of SSc; (iii) we reported the most promising PDGF/PDGFR targeting therapies.


Asunto(s)
Esclerodermia Sistémica , Autoanticuerpos , Fibrosis , Humanos , Factor de Crecimiento Derivado de Plaquetas , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/etiología , Transducción de Señal
5.
Biomedicines ; 10(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35052842

RESUMEN

Systemic sclerosis (SSc) is a systemic, immune-mediated chronic disorder characterized by small vessel alterations and progressive fibrosis of the skin and internal organs. The combination of a predisposing genetic background and triggering factors that causes a persistent activation of immune system at microvascular and tissue level is thought to be the pathogenetic driver of SSc. Endothelial alterations with subsequent myofibroblast activation, excessive extracellular matrix (ECM) deposition, and unrestrained tissue fibrosis are the pathogenetic steps responsible for the clinical manifestations of this disease, which can be highly heterogeneous according to the different entity of each pathogenic step in individual subjects. Although substantial progress has been made in the management of SSc in recent years, disease-modifying therapies are still lacking. Several molecular pathways involved in SSc pathogenesis are currently under evaluation as possible therapeutic targets in clinical trials. These include drugs targeting fibrotic and metabolic pathways (e.g., TGF-ß, autotaxin/LPA, melanocortin, and mTOR), as well as molecules and cells involved in the persistent activation of the immune system (e.g., IL4/IL13, IL23, JAK/STAT, B cells, and plasma cells). In this review, we provide an overview of the most promising therapeutic targets that could improve the future clinical management of SSc.

6.
J Vis Exp ; (146)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31107440

RESUMEN

Pulmonary fibrosis is a hallmark of several human lung diseases with a different etiology. Since current therapies are rather limited, mouse models continue to be an essential tool for developing new antifibrotic strategies. Here we provide an effective method to investigate in vivo antifibrotic activity of human mesenchymal stromal cells obtained from whole umbilical cord (hUC-MSC) in attenuating bleomycin-induced lung injury. C57BL/6 mice receive a single endotracheal injection of bleomycin (1.5 U/kg body weight) followed by a double infusion of hUC-MSC (2.5 x 105) into the tail vein, 24 h and 7 days after the bleomycin administration. Upon sacrifice at days 8, 14, or 21, inflammatory and fibrotic changes, collagen content, and hUC-MSC presence in explanted lung tissue are analyzed. The injection of bleomycin into the mouse trachea allows the direct targeting of the lungs, leading to extensive pulmonary inflammation and fibrosis. The systemic administration of a double dose of hUC-MSC results in the early blunting of the bleomycin-induced lung injury. Intravenously infused hUC-MSC are transiently engrafted into the mouse lungs, where they exert their anti-inflammatory and antifibrotic activity. In conclusion, this protocol has been successfully applied for the preclinical testing of hUC-MSC in an experimental mouse model of human pulmonary fibrosis. However, this technique can be easily extended both to study the effect of different endotracheally administered substances on the pathophysiology of the lungs and to validate new anti-inflammatory and antifibrotic systemic therapies.


Asunto(s)
Bleomicina/farmacología , Lesión Pulmonar/inducido químicamente , Trasplante de Células Madre Mesenquimatosas , Fibrosis Pulmonar/inducido químicamente , Animales , Modelos Animales de Enfermedad , Femenino , Lesión Pulmonar/patología , Lesión Pulmonar/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/terapia , Tráquea , Cordón Umbilical/citología
7.
PLoS One ; 13(6): e0196048, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29856737

RESUMEN

Lung fibrosis is a severe condition resulting from several interstial lung diseases (ILD) with different etiologies. Current therapy of ILD, especially those associated with connective tissue diseases, is rather limited and new anti-fibrotic strategies are needed. In this study, we investigated the anti-fibrotic activity in vivo of human mesenchymal stromal cells obtained from whole umbilical cord (hUC-MSC). Adult immunocompetent C57BL/6 mice (n. = 8 for each experimental condition) were injected intravenously with hUC-MSC (n. = 2.5 × 105) twice, 24 hours and 7 days after endotracheal injection of bleomycin. Upon sacrifice at days 8, 14, 21, collagen content, inflammatory cytokine profile, and hUC-MSC presence in explanted lung tissue were analyzed. Systemic administration of a double dose of hUC-MSC significantly reduced bleomycin-induced lung injury (inflammation and fibrosis) in mice through a selective inhibition of the IL6-IL10-TGFß axis involving lung M2 macrophages. Only few hUC-MSC were detected from explanted lungs, suggesting a "hit and run" mechanism of action of this cellular therapy. Our data indicate that hUC-MSC possess strong in vivo anti-fibrotic activity in a mouse model resembling an immunocompetent human subject affected by inflammatory ILD, providing proof of concept for ad-hoc clinical trials.


Asunto(s)
Sangre Fetal/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Fibrosis Pulmonar/terapia , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Xenoinjertos , Humanos , Pulmón/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Macrófagos/patología , Células Madre Mesenquimatosas/patología , Ratones , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología
8.
Anal Biochem ; 528: 26-33, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28450104

RESUMEN

Systemic sclerosis (SSc) is a chronic autoimmune disease of the connective tissue. The variety and clinical relevance of autoantibodies in SSc patients have been extensively studied, eventually identifying agonistic autoantibodies targeting the platelet-derived growth factor receptor alpha (PDGFRα), and representing potential biomarkers for SSc. We used a resonant mirror biosensor to characterize the binding between surface-blocked PDGFRα and PDGFRα-specific recombinant human monoclonal autoantibodies (mAbs) produced by SSc B cells, and detect/quantify serum autoimmune IgG with binding characteristics similar to the mAbs. Kinetic data showed a conformation-specific, high-affinity interaction between PDGFRα and mAbs, with equilibrium dissociation constants in the low-to-high nanomolar range. When applied to total serum IgG, the assay discriminated between SSc patients and healthy controls, and allowed the rapid quantification of autoimmune IgG in the sera of SSc patients, with anti-PDGFRα IgG falling in the range 3.20-4.67 neq/L of SSc autoantibodies. The test was validated by comparison to direct and competitive anti-PDGFRα antibody ELISA. This biosensor assay showed higher sensibility with respect to ELISA, and other major advantages such as the specificity, rapidity, and reusability of the capturing surface, thus representing a feasible approach for the detection and quantification of high affinity, likely agonistic, SSc-specific anti-PDGFRα autoantibodies.


Asunto(s)
Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Biomarcadores/sangre , Técnicas Biosensibles/métodos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/inmunología , Esclerodermia Sistémica/inmunología , Adulto , Anciano , Linfocitos B/inmunología , Femenino , Humanos , Límite de Detección , Masculino , Persona de Mediana Edad , Esclerodermia Sistémica/diagnóstico , Sensibilidad y Especificidad
10.
Front Immunol ; 8: 75, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28228756

RESUMEN

One of the earliest events in the pathogenesis of systemic sclerosis (SSc) is microvasculature damage with intimal hyperplasia and accumulation of cells expressing PDGF receptor. Stimulatory autoantibodies targeting PDGF receptor have been detected in SSc patients and demonstrated to induce fibrosis in vivo and convert in vitro normal fibroblasts into SSc-like cells. Since there is no evidence of the role of anti-PDGF receptor autoantibodies in the pathogenesis of SSc vascular lesions, we investigated the biologic effect of agonistic anti-PDGF receptor autoantibodies from SSc patients on human pulmonary artery smooth muscle cells and the signaling pathways involved. The synthetic (proliferation, migration, and type I collagen gene α1 chain expression) and contractile (smooth muscle-myosin heavy chain and smooth muscle-calponin expression) profiles of human pulmonary artery smooth muscle cells were assessed in vitro after incubation with SSc anti-PDGF receptors stimulatory autoantibodies. The role of reactive oxygen species, NOX isoforms, and mammalian target of rapamycin (mTOR) was investigated. Human pulmonary artery smooth muscle cells acquired a synthetic phenotype characterized by higher growth rate, migratory activity, gene expression of type I collagen α1 chain, and less expression of markers characteristic of the contractile phenotype such as smooth muscle-myosin heavy chain and smooth muscle-calponin when stimulated with PDGF and autoantibodies against PDGF receptor, but not with normal IgG. This phenotypic profile is mediated by increased generation of reactive oxygen species and expression of NOX4 and mTORC1. Our data indicate that agonistic anti-PDGF receptor autoantibodies may contribute to the pathogenesis of SSc intimal hyperplasia.

11.
Arthritis Rheumatol ; 68(9): 2263-73, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27111463

RESUMEN

OBJECTIVE: To describe a skin-SCID mouse chimeric model of systemic sclerosis (SSc; scleroderma) fibrosis based on engraftment of ex vivo-bioengineered skin using skin cells derived either from scleroderma patients or from healthy donors. METHODS: Three-dimensional bioengineered skin containing human keratinocytes and fibroblasts isolated from skin biopsy specimens from healthy donors or SSc patients was generated ex vivo and then grafted onto the backs of SCID mice. The features of the skin grafts were analyzed by immunohistochemistry, and the functional profile of the graft fibroblasts was defined before and after treatment with IgG from healthy controls or SSc patients. Two procedures were used to investigate the involvement of platelet-derived growth factor receptor (PDGFR): 1) nilotinib, a tyrosine kinase inhibitor, was administered to mice before injection of IgG from SSc patient sera (SSc IgG) into the grafts, and 2) human anti-PDGFR monoclonal antibodies were injected into the grafts. RESULTS: Depending on the type of bioengineered skin grafted, the regenerated human skin exhibited either the typical scleroderma phenotype or the healthy human skin architecture. Treatment of animals carrying healthy donor skin grafts with SSc IgG resulted in the appearance of a bona fide scleroderma phenotype, as confirmed by increased collagen deposition and fibroblast activation markers. Results of the experiments involving administration of nilotinib or monoclonal antibodies confirmed the involvement of PDGFR. CONCLUSION: Our results provide the first in vivo demonstration of the fibrotic properties of anti-PDGFR agonistic antibodies. This bioengineered skin-humanized mouse model can be used to test in vivo the progression of the disease and to monitor response to antifibrotic drugs.


Asunto(s)
Autoanticuerpos/administración & dosificación , Modelos Animales de Enfermedad , Receptores del Factor de Crecimiento Derivado de Plaquetas/inmunología , Esclerodermia Localizada/inmunología , Esclerodermia Sistémica/inmunología , Animales , Fibrosis/inmunología , Ratones , Ratones SCID , Esclerodermia Localizada/patología , Esclerodermia Sistémica/patología , Piel/inmunología
12.
Arthritis Rheumatol ; 67(7): 1891-903, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25808833

RESUMEN

OBJECTIVE: To identify the epitopes recognized by autoantibodies targeting platelet-derived growth factor receptor α (PDGFRα) in systemic sclerosis (SSc) and develop novel assays for detection of serum anti-PDGFRα autoantibodies. METHODS: Epstein-Barr virus-immortalized B cells from 1 patient with SSc (designated PAM) were screened for expression of IgG binding to PDGFRα and induction of reactive oxygen species in fibroblasts. The variable regions of anti-PDGFRα IgG were cloned into an IgG expression vector to generate distinct recombinant human monoclonal autoantibodies (mAb), which were characterized by binding and functional assays. The epitopes of anti-PDGFRα recombinant human mAb were defined by molecular docking, surface plasmon resonance binding assays, screening of a conformational peptide library spanning the PDGFRα extracellular domains, and expression analyses of alanine-scanned PDGFRα mutants. Direct or competitive enzyme-linked immunosorbent assays were established to detect all serum anti-PDGFRα autoantibodies or, selectively, the agonistic ones. RESULTS: Three types of anti-PDGFRα recombinant human mAb, with the same VH but distinct VL chains, were generated. Nonagonistic VH PAM-Vκ 13B8 recognized 1 linear epitope, whereas agonistic VH PAM-Vλ 16F4 and VH PAM-Vκ 16F4 recognized 2 distinct conformational epitopes. Serum anti-PDGFRα antibodies were detected in 66 of 70 patients with SSc, 63 of 130 healthy controls, 11 of 26 patients with primary Raynaud's phenomenon (RP), and 13 of 29 patients with systemic lupus erythematosus (SLE). Serum VH PAM-Vκ 16F4-like antibodies were found in 24 of 34 patients with SSc, but not in healthy controls, patients with primary RP, or patients with SLE. Peptides composing the VH PAM-Vκ 16F4 epitope inhibited PDGFRα signaling triggered by serum IgG from SSc patients. CONCLUSION: Agonistic anti-PDGFRα autoantibodies are enriched in SSc sera and recognize specific conformational epitopes that can be used to discriminate agonistic from nonagonistic antibodies and block PDGFRα signaling in patients with SSc.


Asunto(s)
Especificidad de Anticuerpos/inmunología , Autoanticuerpos/inmunología , Epítopos/inmunología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/inmunología , Esclerodermia Sistémica/inmunología , Secuencia de Aminoácidos , Autoanticuerpos/sangre , Autoanticuerpos/química , Estudios de Casos y Controles , Colágeno/metabolismo , Mapeo Epitopo , Epítopos/química , Femenino , Humanos , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/inmunología , Persona de Mediana Edad , Datos de Secuencia Molecular , Conformación Proteica , Enfermedad de Raynaud/sangre , Enfermedad de Raynaud/inmunología , Especies Reactivas de Oxígeno/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/química , Esclerodermia Sistémica/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...