Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MRS Bull ; 46(9): 822-831, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539059

RESUMEN

Abstract: The COVID-19 pandemic triggered a surge in demand for N95 or equivalent respirators that the global supply chain was unable to satisfy. This shortage in critical equipment has inspired research that addresses the immediate problems and has accelerated the development of the next-generation filtration media and respirators. This article provides a brief review of the most recent work with regard to face respirators and filtration media. We discuss filtration efficiency of the widely utilized cloth masks. Next, the sterilization of and reuse of existing N95 respirators to extend the existing stockpile is discussed. To expand near-term supplies, optimization of current manufacturing methods, such as melt-blown processes and electrospinning, has been explored. Future manufacturing methods have been investigated to address long-term supply shortages. Novel materials with antiviral and sterilizable properties with the ability for multiple reuses have been developed and will contribute to the development of the next generation of longer lasting multi-use N95 respirators. Finally, additively manufactured respirators are reviewed, which enable a rapidly deployable source of reusable respirators that can use any filtration fabric.

2.
J Phys Chem B ; 125(20): 5443-5450, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34003647

RESUMEN

Quasi-liquid solid electrolytes are a promising alternative for next-generation Li batteries. These systems combine the safety of solid electrolytes with the desired properties of liquids and are typically formed by solutions of Li salts in ionic liquids incorporated into solid matrices. Here, we present a fundamental understanding of the transport properties in solutions of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]), either in bulk form or incorporated in a boron nitride (BN) matrix. We performed a series of quasi-elastic neutron scattering experiments that, given the high incoherent neutron scattering cross section of hydrogen, allowed us to focus on the Emim+ dynamics. First, [Emim][TFSI]/LiTFSI solutions (0.5 and 2.5 mol·kg-1) were investigated and we show how the increase in the concentration reduces the Emim+ mobility and increases the activation energy of their long-range motions. Then, the 0.5 mol·kg-1 solution was incorporated into the BN matrix and we report that the diffusivities of the Emim+ cations that remain mobile under confinement are highly accelerated in comparison with the bulk sample and the activation energy of these motions is drastically reduced. We present the experimental evidence that this effect is related to the content of the Emim+ cations immobilized near the surfaces of the BN pores.

3.
Materials (Basel) ; 13(15)2020 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-32722569

RESUMEN

Extrusion based additive manufacturing of polymer composite magnets can increase the solid loading volume fraction with greater mechanical force through the printing nozzle as compared to traditional injection molding process. About 63 vol% of isotropic NdFeB magnet powders were compounded with 37 vol% of polyphenylene sulfide and bonded permanent magnets were fabricated while using Big Area Additive Manufacturing without any degradation in magnetic properties. The polyphenylene sulfide bonded magnets have a tensile stress of 20 MPa, almost double than that of nylon bonded permanent magnets. Additively manufactured and surface-protective-resin coated bonded magnets meet the industrial stability criterion of up to 175 °C with a flux-loss of 2.35% over 1000 h. They also exhibit better corrosion resistance behavior when exposed to acidic (pH = 1.35) solution for 24 h and also annealed at 80 °C over 100 h (at 95% relative humidity) over without coated magnets. Thus, polyphenylene sulfide bonded, additively manufactured, protective resin coated bonded permanent magnets provide better thermal, mechanical, and magnetic properties.

4.
Heliyon ; 5(11): e02804, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31768437

RESUMEN

High silicon (Si) electrical steel has the potential for efficient use in applications such as electrical motors and generators with cost-effective in processing, but it is difficult to manufacture. Increasing the Si content beyond 3 wt.% improves magnetic and electrical properties, with 6.5 wt.% being achievable. The main goal of this research is to design, develop, and implement a scalable additive manufacturing process to fabricate Fe with 6.5 wt.% Si (Fe-6Si) steel with high magnetic permeability, high electrical resistivity, low coercivity, and low residual induction that other methods cannot achieve because of manufacturing limitations. Binder jet additive manufacturing was used to deposit near net shape components that were subsequently sintered via solid-state sintering to achieve near full densification. Here, it is shown that the use of solid-state sintering mitigates cracking since no rapid solidification occurs unlike fusion-based additive technologies. The Fe-6Si samples demonstrated an ultimate tensile strength of 434 MPa, electrical resistivity of 98 µΩ cm, and saturation magnetization of 1.83 T with low coercivity and high permeability. The results strongly supports to replace the only available 0.1 mm thick chemical vapor deposition (CVD) produced Si steel using the cost effective AM method with good mechanical and magnetic properties for motor applications.

5.
Waste Manag ; 90: 94-99, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31088677

RESUMEN

In this work, we describe an efficient and environmentally benign method of recycling of additive printed Nd-Fe-B polymer bonded magnets. Rapid pulverization of bonded magnets into composite powder containing Nd-Fe-B particles and polymer binder was achieved by milling at cryogenic temperatures. The recycled bonded magnets fabricated by warm compaction of ground cryomilled coarse composite powders and nylon particles showed improved magnetic properties and density. Remanent magnetization and saturation magnetization increased by 4% and 6.5% respectively, due to enhanced density while coercivity and energy product were retained from the original additive printed bonded magnets. This study presents a facile method that enables the direct reuse of end-of-life bonded magnets for remaking new bonded magnets. In addition to magnetic properties, mechanical properties comparable to commercial products have been achieved. This research advances efforts to ensure sustainability in critical materials by forming close loop supply chain.


Asunto(s)
Metales de Tierras Raras , Neodimio , Imanes , Reciclaje , Temperatura
6.
ChemSusChem ; 12(7): 1316-1324, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30759316

RESUMEN

The transformation of MXene sheets into TiOF2 2D sheets with superior electrochemical performance was developed. MXene synthesized from Ti3 AlC2 was fluorinated for 3, 6, and 24 h, respectively, by means of a direct fluorination process. Exposure of MXene powder to elemental fluorine for 3 h induced the formation of CF2 groups and TiF3 on the surface, which have beneficial effects on the electrochemical performance. X-ray photoelectron spectroscopy suggested that after fluorinating the MXene sample for 6 h Ti2+ and Ti3+ were not present on the surface but only Ti4+ , indicating the formation of TiOF2 . XRD indicated that TiOF2 was present after fluorinating for 3 h, and after 24 h the MXene had transformed to TiOF2 with minor impurities remaining, maintaining its 2D layer morphology. The 24 h fluorinated sample with its TiOF2 phase showed superior capacity that increased with cycle number. It also had a better rate capability than non-2D-layered TiOF2 , indicating the advantage of the 2D-layered morphology derived from the parent MXene phase.

7.
Sci Rep ; 6: 36212, 2016 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-27796339

RESUMEN

Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.

8.
Chem Commun (Camb) ; 52(8): 1713-6, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26666453

RESUMEN

A novel hybrid battery utilizing an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl3) (EMImCl-AlCl3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. The hybrid ion battery delivers an initial high capacity of 160 mA h g(-1) at a current rate of C/5. It also shows good rate capability and cycling performance.

9.
ChemSusChem ; 8(21): 3576-81, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26404735

RESUMEN

Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m(2) g(-1)) is synthesized using waste tires as the precursor and used as a supercapacitor electrode material. The narrow pore-size distribution and high surface area led to good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI). The composite paper was highly flexible, conductive, and exhibited a capacitance of 480 F g(-1) at 1 mV s(-1) with excellent capacitance retention of up to 98% after 10,000 charge/discharge cycles. The high capacitance and long cycle life were ascribed to the short diffusional paths, uniform PANI coating, and tight confinement of the PANI in the inner pores of the tire-derived carbon through π-π interactions, which minimized the degradation of the PANI upon cycling. We anticipate that the same strategy can be applied to deposit other pseudocapacitive materials to achieve even higher electrochemical performance and longer cycle life-a key challenge for redox active polymers.


Asunto(s)
Carbono/química , Residuos Peligrosos , Nanocompuestos/química , Papel , Polímeros/química , Capacidad Eléctrica , Electrodos , Porosidad , Eliminación de Residuos , Espectrometría Raman , Propiedades de Superficie
10.
Nano Lett ; 15(2): 1062-9, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25564924

RESUMEN

Scanning probe microscopy (SPM) is a powerful tool to investigate electrochemistry in nanoscale volumes. While most SPM-based studies have focused on reactions at the tip-surface junction, charge and mass conservation requires coupled and intrinsically nonlocal cathodic and anodic processes that can be significantly affected by ambient humidity. Here, we explore the role of water in both cathodic and anodic processes, associated charge transport, and topographic volume changes depending on the polarity of tip bias. The first-order reversal curve current-voltage technique combined with simultaneous detection of the sample topography, referred to as FORC-IVz, was applied to a silver solid ion conductor. We found that the protons generated from water affect silver ionic conduction, silver particle formation and dissolution, and mechanical integrity of the material. This work highlights the dual nature (simultaneously local and nonlocal) of electrochemical SPM studies, which should be considered for comprehensive understanding of nanoscale electrochemistry.


Asunto(s)
Electroquímica , Humedad , Nanotecnología , Plata/química , Microscopía de Sonda de Barrido
11.
Langmuir ; 30(3): 900-10, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24400670

RESUMEN

We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum Brunauer-Emmett-Teller (BET) specific surface area of 1148 m(2)/g and a pore volume of 1.0 cm(3)/g. Both physical and chemical activation enhanced the mesoporosity along with significant microporosity. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited a range of surface-area-based capacitance similar to that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and enhanced the gravimetric specific capacitance of the mesoporous carbons. A vertical tail in the lower-frequency domain of the Nyquist plot provided additional evidence of good supercapacitor behavior for the activated mesoporous carbons. We have modeled the equivalent circuit of the Nyquist plot with the help of two constant phase elements (CPE). Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

12.
Adv Mater ; 25(44): 6459-63, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24114810

RESUMEN

A strategy to enhance the catalytic activity at the surface of an oxide thin film is unveiled through epitaxial orientation control of the surface oxygen vacancy concentration. By tuning the direction of the oxygen vacancy channels (OVCs) in the brownmillerite SrCoO2.5 , a 100-fold improvement in the oxygen reduction kinetics is realized in an epitaxial thin film that has the OVCs open to the surface.

14.
Nanotechnology ; 20(45): 455601, 2009 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-19822933

RESUMEN

Highly ordered HfO2 nanotube arrays were prepared through an electrochemical anodization in the presence of NH4F and ethylene glycol. The voltage-dependent pore size, wall thickness and porosity were studied using scanning electron microscopy and a wall thickness to pore size ratio was proposed on the basis of the results to serve as a boundary condition additional to the 10% porosity rule introduced by the Gosele group. The average distributions of the tube sizes and wall thicknesses of the nanotubes prepared at 20 V were determined from the small-angle x-ray scattering data using a simple polydisperse core-shell cylinder model fit. Temperature-dependent x-ray diffraction measurements show that the as-grown amorphous nanotube arrays can be converted into crystalline nanotube arrays at a temperature above 500 degrees C. Transmission electron microscopy study of the dimple layer under the as-grown nanotube arrays reveals the presence of a layer of ordered HfO2 nanocrystals. Further microscopic investigation of the nanotube root region indicates that the nanotubes develop from bulbs produced during anodization. A possible gas bubble initiated growth mechanism based on these observations was proposed.

15.
ACS Nano ; 3(2): 273-8, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19236061

RESUMEN

Vertically aligned, dense ZnO nanorod arrays were grown directly on zinc foils by a catalyst-free, low-temperature (450-500 degrees C) oxidization method. The zinc foils remain conductive even after the growth of ZnO nanorods on its surface. The success of this synthesis largely relies on the level of control over oxygen introduction. By replacing zinc foils with zinc microspheres, unique and sophisticated urchin-like ZnO nanorod assemblies can be readily obtained.

16.
Nanoscale ; 1(3): 347-54, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20648272

RESUMEN

Germanium (Ge), a Group IV semiconductor, was recently used as an effective catalyst to grow individual, single-crystalline ZnO nanowires through a vapor-liquid-solid (VLS) process [Pan et al., Angew. Chem., Int. Ed., 2005, 44, 274-278]. Here, we show that Ge can also act as an efficient catalyst for the large-scale growth of highly aligned, closely-packed polycrystalline Al(2)O(3) and amorphous SiO(2) nanowire bunch arrays. The Ge-catalyzed Al(2)O(3) and SiO(2) nanowire growth exhibits many interesting growth behaviors including (i) multiple nanowire growth catalyzed by one micrometer-size Ge particle, (ii) branching growth and (iii) batch-by-batch growth. These growth phenomena are distinct from the conventional Au-catalyzed nanowire growth but are analogous to the recently reported Ga-catalyzed SiO(2) nanowire growth. It is anticipated that many other oxide nanowires and nanowire assemblies can be synthesized through the Ge-catalyzed VLS process. The Ge-catalyzed Al(2)O(3) and SiO(2) nanowires emit strong visible light under ultraviolet light excitation.

17.
Phys Rev Lett ; 103(22): 226401, 2009 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-20366114

RESUMEN

"Noncompensated n-p codoping" is established as an enabling concept for enhancing the visible-light photoactivity of TiO2 by narrowing its band gap. The concept embodies two crucial ingredients: the electrostatic attraction within the n-p dopant pair enhances both the thermodynamic and kinetic solubilities, and the noncompensated nature ensures the creation of tunable intermediate bands that effectively narrow the band gap. The concept is demonstrated using first-principles calculations, and is validated by direct measurements of band gap narrowing using scanning tunneling spectroscopy, dramatically redshifted optical absorbance, and enhanced photoactivity manifested by efficient electron-hole separation in the visible-light region. This concept is broadly applicable to the synthesis of other advanced functional materials that demand optimal dopant control.

18.
Science ; 311(5769): 1911-4, 2006 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16574864

RESUMEN

We demonstrated short segments of a superconducting wire that meets or exceeds performance requirements for many large-scale applications of high-temperature superconducting materials, especially those requiring a high supercurrent and/or a high engineering critical current density in applied magnetic fields. The performance requirements for these varied applications were met in 3-micrometer-thick YBa2Cu3O(7-delta) films epitaxially grown via pulsed laser ablation on rolling assisted biaxially textured substrates. Enhancements of the critical current in self-field as well as excellent retention of this current in high applied magnetic fields were achieved in the thick films via incorporation of a periodic array of extended columnar defects, composed of self-aligned nanodots of nonsuperconducting material extending through the entire thickness of the film. These columnar defects are highly effective in pinning the superconducting vortices or flux lines, thereby resulting in the substantially enhanced performance of this wire.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...