Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Mol Biol Rep ; 50(5): 4049-4060, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36869205

RESUMEN

BACKGROUND: Vegetable soybean seeds are among the most popular and nutrient-dense beans in the world due to their delicious flavor, high yield, superior nutritional value, and low trypsin content. There is significant potential for this crop that Indian farmers do not fully appreciate because of the limited germplasm range. Therefore, the current study aims to identify the diverse lines of vegetable soybean and explore the diversity produced by hybridizing grain and vegetable-type soybean varieties. Indian researchers have not yet published work describing and analysing novel vegetable soybean for microsatellite markers and morphological traits. METHODS AND RESULTS: Sixty polymorphic SSR markers and 19 morphological traits were used to evaluate the genetic diversity of 21 newly developed vegetable soybean genotypes. A total of 238 alleles, ranging from 2 to 8, were found, with a mean of 3.97 alleles per locus. The polymorphism information content varied from 0.05 to 0.85, with an average of 0.60. A variation of 0.25-0.58 with a mean of 0.43 was observed for Jaccard's dissimilarity coefficient. CONCLUSION: The diverse genotypes identified can be helpful to understand the genetics of vegetable soybean traits and can be used in improvement programs; study also explains the utility of SSR markers for diversity analysis of vegetable soybean. Here, we identified the highly informative SSRs with PIC > 0.80 (satt199, satt165, satt167, satt191, satt183, satt202, and satt126), which apply to genetic structure analysis, mapping strategies, polymorphic marker surveys, and background selection in genomics-assisted breeding.


Asunto(s)
Variación Genética , Glycine max , Variación Genética/genética , Glycine max/genética , Verduras/genética , Fitomejoramiento , Genotipo , Repeticiones de Microsatélite/genética
2.
Front Plant Sci ; 13: 1012368, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275533

RESUMEN

Seed coat colour is an important trait in Indian mustard. Breeding for seed coat colour needs precise knowledge of mode of inheritance and markers linked to it. The present study was focussed on genetics and development of functional markers for seed coat colour. F1s (direct and reciprocal) and F2 populations were developed by crossing two contrasting parents for seed coat colour (DRMRIJ-31, brown seeded and RLC-3, yellow seeded). Phenotypic results have shown that the seed coat colour trait was under the influence of maternal effect and controlled by digenic-duplicate gene action. Further, Bju.TT8 homologs of both parents (DRMRIJ-31 and RLC-3) were cloned and sequenced. Sequencing results of Bju.TT8 homologs revealed that in RLC-3, gene Bju.ATT8 had an insertion of 1279bp in the 7th exon; whereas, gene Bju.BTT8 had an SNP (C→T) in the 7th exon. These two mutations were found to be associated with yellow seed coat colour. Using sequence information, functional markers were developed for both Bju.TT8 homologs, validated on F2 population and were found highly reliable with no recombination between the markers and the phenotype. Further, these markers were subjected to a germplasm assembly of Indian mustard, and their allelic combination for the seed coat colour genes has been elucidated. The comparative genomics of TT8 genes revealed high degree of similarity between and across the Brassica species, and the respective diploid progenitors in tetraploid Brassica species are the possible donors of TT8 homologs. This study will help in the marker-assisted breeding for seed coat colour, and aid in understanding seed coat colour genetics more precisely.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA