Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Conserv Biol ; : e14323, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045776

RESUMEN

Biotic interactions, such as plant-animal seed dispersal mutualisms, are essential for ecosystem function. Such interactions are threatened by the possible extinction of the animal partners. Using a data set that includes plant-lemur interactions across Madagascar, we studied the current state of knowledge of these interactions and their structure to determine which plant species are most at risk of losing dispersal services due to the loss of lemurs. We found substantial gaps in understanding of plant-lemur interactions; data were substantially skewed toward a few lemur species and locations. There was also a large gap in knowledge on the interactions of plants and small-bodied or nocturnal lemurs and lemurs outside a few highly studied locations. Of the recorded interactions, a significant portion occurred between lemurs and endemic plants, rather than native or introduced plants. We also found that lemur species tended to primarily consume closely related plant species. Such interaction patterns may indicate the threats to Malagasy endemic plants and highlight how lemur population loss or reductions could affect plant phylogenetic diversity. When examining the impacts of lemur extinction, losing critically endangered species left 164 plant species with no known lemur frugivore partners. Despite phylogenetic patterns in lemur diet, plants for which the only known lemur frugivore is critically endangered were not closely related. These results emphasize the need for further studies to complete our knowledge on these essential interactions and to inform conservation priorities.


Análisis de la estructura de las interacciones entre lémures y plantas de cara al conocimiento incompleto Resumen Las interacciones bióticas, como el mutualismo entre plantas y animales para la dispersión de semillas, son esenciales para que el ecosistema funcione. Dichas interacciones se encuentran amenazadas por la posible extinción del animal que participa en ellas. Usamos un conjunto de datos que incluye las interacciones entre lémures y plantas en Madagascar para estudiar el estado actual del conocimiento de estas interacciones y su estructura. Con lo anterior determinamos cuáles especies botánicas tienen mayor riesgo de perder la dispersión de semillas debido a la extinción de los lémures. Encontramos vacíos sustanciales en el entendimiento de las interacciones entre lémures y plantas; los datos estaban sesgados para unas cuantas especies de lémures y localidades. Hubo un gran vacío de conocimiento para las interacciones entre las plantas y los lémures pequeños o nocturnos y aquellos fuera de unas cuantas localidades estudiadas. De las interacciones registradas, una porción importante ocurrió entre los lémures y plantas endémicas, en lugar de plantas nativas o introducidas. También encontramos que las especies de lémures tienden a consumir especies botánicas con filogenia cercana. Dichos patrones de interacción podrían indicar las amenazas para las plantas endémicas de Madagascar y enfatizar cómo la pérdida o reducción de las poblaciones de lémures podrían afectar la diversidad filogenética de las plantas. Cuando examinamos el impacto de la extinción de los lémures, la pérdida de especies en peligro crítico dejó a 164 especies de plantas sin un lémur frugívoro mutualista. A pesar de los patrones filogenéticos en la dieta de los lémures, las plantas cuyo único lémur frugívoro se encuentra en peligro crítico no tienen una filogenia cercana. Estos resultados resaltan la necesidad de más estudios para completar nuestro conocimiento sobre estas interacciones esenciales y para guiar las prioridades de conservación.

2.
Proc Natl Acad Sci U S A ; 120(48): e2306723120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37956437

RESUMEN

Anthropogenic climate change has significantly altered the flowering times (i.e., phenology) of plants worldwide, affecting their reproduction, survival, and interactions. Recent studies utilizing herbarium specimens have uncovered significant intra- and inter-specific variation in flowering phenology and its response to changes in climate but have mostly been limited to animal-pollinated species. Thus, despite their economic and ecological importance, variation in phenological responses to climate remain largely unexplored among and within wind-pollinated dioecious species and across their sexes. Using both herbarium specimens and volunteer observations of cottonwood (Populus) species, we examined how phenological sensitivity to climate varies across species, their ranges, sexes, and phenophases. The timing of flowering varied significantly across and within species, as did their sensitivity to spring temperature. In particular, male flowering generally happened earlier in the season and was more sensitive to warming than female flowering. Further, the onset of flowering was more sensitive to changes in temperature than leaf out. Increased temporal gaps between male and female flowering time and between the first open flower date and leaf out date were predicted for the future under two climate change scenarios. These shifts will impact the efficacy of sexual reproduction and gene flow among species. Our study demonstrates significant inter- and intra-specific variation in phenology and its responses to environmental cues, across species' ranges, phenophases, and sex, in wind-pollinated species. These variations need to be considered to predict accurately the effects of climate change and assess their ecological and evolutionary consequences.


Asunto(s)
Flores , Reproducción , Humanos , Animales , Flores/fisiología , Hojas de la Planta , Sexo , Plantas , Cambio Climático , Estaciones del Año , Temperatura
3.
Nature ; 620(7972): 209-217, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37438531

RESUMEN

The human genome functions as a three-dimensional chromatin polymer, driven by a complex collection of chromosome interactions1-3. Although the molecular rules governing these interactions are being quickly elucidated, relatively few proteins regulating this process have been identified. Here, to address this gap, we developed high-throughput DNA or RNA labelling with optimized Oligopaints (HiDRO)-an automated imaging pipeline that enables the quantitative measurement of chromatin interactions in single cells across thousands of samples. By screening the human druggable genome, we identified more than 300 factors that influence genome folding during interphase. Among these, 43 genes were validated as either increasing or decreasing interactions between topologically associating domains. Our findings show that genetic or chemical inhibition of the ubiquitous kinase GSK3A leads to increased long-range chromatin looping interactions in a genome-wide and cohesin-dependent manner. These results demonstrate the importance of GSK3A signalling in nuclear architecture and the use of HiDRO for identifying mechanisms of spatial genome organization.


Asunto(s)
Cromatina , Posicionamiento de Cromosoma , Cromosomas Humanos , Genoma Humano , Glucógeno Sintasa Quinasas , Ensayos Analíticos de Alto Rendimiento , Análisis de la Célula Individual , Humanos , Cromatina/efectos de los fármacos , Cromatina/genética , Cromatina/metabolismo , Posicionamiento de Cromosoma/efectos de los fármacos , Cromosomas Humanos/efectos de los fármacos , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , ADN/análisis , ADN/metabolismo , Genoma Humano/efectos de los fármacos , Genoma Humano/genética , Glucógeno Sintasa Quinasas/antagonistas & inhibidores , Glucógeno Sintasa Quinasas/deficiencia , Glucógeno Sintasa Quinasas/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Interfase , Reproducibilidad de los Resultados , ARN/análisis , ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Análisis de la Célula Individual/métodos , Cohesinas
4.
Nat Hum Behav ; 7(7): 1059-1068, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37308536

RESUMEN

Herbarium collections shape our understanding of Earth's flora and are crucial for addressing global change issues. Their formation, however, is not free from sociopolitical issues of immediate relevance. Despite increasing efforts addressing issues of representation and colonialism in natural history collections, herbaria have received comparatively less attention. While it has been noted that the majority of plant specimens are housed in the Global North, the extent and magnitude of this disparity have not been quantified. Here we examine the colonial legacy of botanical collections, analysing 85,621,930 specimen records and assessing survey responses from 92 herbarium collections across 39 countries. We find an inverse relationship between where plant diversity exists in nature and where it is housed in herbaria. Such disparities persist across physical and digital realms despite overt colonialism ending over half a century ago. We emphasize the need for acknowledging the colonial history of herbarium collections and implementing a more equitable global paradigm for their collection, curation and use.


Asunto(s)
Plantas , Humanos , Encuestas y Cuestionarios
5.
New Phytol ; 239(6): 2153-2165, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36942966

RESUMEN

Urbanization can affect the timing of plant reproduction (i.e. flowering and fruiting) and associated ecosystem processes. However, our knowledge of how plant phenology responds to urbanization and its associated environmental changes is limited. Herbaria represent an important, but underutilized source of data for investigating this question. We harnessed phenological data from herbarium specimens representing 200 plant species collected across 120 yr from the eastern US to investigate the spatiotemporal effects of urbanization on flowering and fruiting phenology and frost risk (i.e. time between the last frost date and flowering). Effects of urbanization on plant reproductive phenology varied significantly in direction and magnitude across species ranges. Increased urbanization led to earlier flowering in colder and wetter regions and delayed fruiting in regions with wetter spring conditions. Frost risk was elevated with increased urbanization in regions with colder and wetter spring conditions. Our study demonstrates that predictions of phenological change and its associated impacts must account for both climatic and human effects, which are context dependent and do not necessarily coincide. We must move beyond phenological models that only incorporate temperature variables and consider multiple environmental factors and their interactions when estimating plant phenology, especially at larger spatial and taxonomic scales.


Asunto(s)
Ecosistema , Urbanización , Humanos , Cambio Climático , Flores , Estaciones del Año , Temperatura , Reproducción , Plantas
7.
PLoS One ; 17(11): e0268162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36374834

RESUMEN

Massive biological databases of species occurrences, or georeferenced locations where a species has been observed, are essential inputs for modeling present and future species distributions. Location accuracy is often assessed by determining whether the observation geocoordinates fall within the boundaries of the declared political divisions. This otherwise simple validation is complicated by the difficulty of matching political division names to the correct geospatial object. Spelling errors, abbreviations, alternative codes, and synonyms in multiple languages present daunting name disambiguation challenges. The inability to resolve political division names reduces usable data, and analysis of erroneous observations can lead to flawed results. Here, we present the Geographic Name Resolution Service (GNRS), an application for correcting, standardizing, and indexing world political division names. The GNRS resolves political division names against a reference database that combines names and codes from GeoNames with geospatial object identifiers from the Global Administrative Areas Database (GADM). In a trial resolution of political division names extracted from >270 million species occurrences, only 1.9%, representing just 6% of occurrences, matched exactly to GADM political divisions in their original form. The GNRS was able to resolve, completely or in part, 92% of the remaining 378,568 political division names, or 86% of the full biodiversity occurrence dataset. In assessing geocoordinate accuracy for >239 million species occurrences, resolution of political divisions by the GNRS enabled the detection of an order of magnitude more errors and an order of magnitude more error-free occurrences. By providing a novel solution to a significant data quality impediment, the GNRS liberates a tremendous amount of biodiversity data for quantitative biodiversity research. The GNRS runs as a web service and is accessible via an API, an R package, and a web-based graphical user interface. Its modular architecture is easily integrated into existing data validation workflows.


Asunto(s)
Biodiversidad , Nombres , Bases de Datos Factuales , Estándares de Referencia
8.
PLoS Genet ; 18(11): e1010528, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36449519

RESUMEN

The relationship between cohesin-mediated chromatin looping and gene expression remains unclear. NIPBL and WAPL are two opposing regulators of cohesin activity; depletion of either is associated with changes in both chromatin folding and transcription across a wide range of cell types. However, a direct comparison of their individual and combined effects on gene expression in the same cell type is lacking. We find that NIPBL or WAPL depletion in human HCT116 cells each alter the expression of ~2,000 genes, with only ~30% of the genes shared between the conditions. We find that clusters of differentially expressed genes within the same topologically associated domain (TAD) show coordinated misexpression, suggesting some genomic domains are especially sensitive to both more or less cohesin. Finally, co-depletion of NIPBL and WAPL restores the majority of gene misexpression as compared to either knockdown alone. A similar set of NIPBL-sensitive genes are rescued following CTCF co-depletion. Together, this indicates that altered transcription due to reduced cohesin activity can be functionally offset by removal of either its negative regulator (WAPL) or the physical barriers (CTCF) that restrict loop-extrusion events.


Asunto(s)
Proteínas de Ciclo Celular , Cromatina , Proteínas Cromosómicas no Histona , Regulación de la Expresión Génica , Humanos , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Genes cdc , Genoma , Células HCT116 , Cohesinas
9.
New Phytol ; 236(2): 760-773, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35801834

RESUMEN

Plant-pollinator mutualisms rely upon the synchrony of interacting taxa. Climate change can disrupt this synchrony as phenological responses to climate vary within and across species. However, intra- and interspecific variation in phenological responses is seldom considered simultaneously, limiting our understanding of climate change impacts on interactions among taxa across their ranges. We investigated how variation in phenological sensitivity to climate can alter ecological interactions simultaneously within and among species using natural history collections and citizen science data. We focus on a unique system, comprising a wide-ranged spring ephemeral with varying color morphs (Claytonia virginica) and its specialist bee pollinator (Andrena erigeniae). We found strongly opposing trends in the phenological sensitivities of plants vs their pollinators. Flowering phenology was more sensitive to temperature in warmer regions, whereas bee phenology was more responsive in colder regions. Phenological sensitivity varied across flower color morphs. Temporal synchrony between flowering and pollinator activity was predicted to change heterogeneously across the species' ranges in the future. Our work demonstrates the complexity and fragility of ecological interactions in time and the necessity of incorporating variation in phenological responses across multiple axes to understand how such interactions will change in the future.


Asunto(s)
Cambio Climático , Flores , Animales , Abejas , Flores/fisiología , Plantas , Reproducción , Estaciones del Año , Temperatura
10.
Trends Ecol Evol ; 37(8): 683-693, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35680467

RESUMEN

Earth's most speciose biomes are in the tropics, yet tropical plant phenology remains poorly understood. Tropical phenological data are comparatively scarce and viewed through the lens of a 'temperate phenological paradigm' expecting phenological traits to respond to strong, predictably annual shifts in climate (e.g., between subfreezing and frost-free periods). Digitized herbarium data greatly expand existing phenological data for tropical plants; and circular data, statistics, and models are more appropriate for analyzing tropical (and temperate) phenological datasets. Phylogenetic information, which remains seldom applied in phenological investigations, provides new insights into phenological responses of large groups of related species to climate. Consistent combined use of herbarium data, circular statistical distributions, and robust phylogenies will rapidly advance our understanding of tropical - and temperate - phenology.


Asunto(s)
Cambio Climático , Flores , Clima , Filogenia , Plantas/genética , Estaciones del Año , Temperatura
11.
Sens Actuators B Chem ; 3612022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35611132

RESUMEN

The presence of air bubbles boosts the shear resistance and causes pressure fluctuation within fluid-perfused microchannels, resulting in possible cell damage and even malfunction of microfluidic devices. Eliminating air bubbles is especially challenging in microscale where the adhesive surface tension force is often dominant over other forces. Here, we present an air bubble removal strategy from a novel surface engineering perspective. A microfluidic port-to-port interconnect was fabricated by modifying the peripheral of the microfluidic ports superhydrophobic, while maintaining the inner polymer microchannels hydrophilic. Such a sharp wettability contrast enabled a preferential fluidic entrance into the easy-wetting microchannels over the non-wetting boundaries of the microfluidic ports, while simultaneously filtering out any incoming air bubbles owing to the existence of port-to-port gaps. This bubble-eliminating capability was consistently demonstrated at varying flow rates and liquid analytes. Compared to equipment-intensive techniques and porous membrane-venting strategies, our wettability contrast-governed strategy provides a simple yet effective route for eliminating air bubbles and simultaneously sealing microfluidic interconnects.

12.
New Phytol ; 233(3): 1466-1478, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34626123

RESUMEN

Interactions between species can influence successful reproduction, resulting in reproductive character displacement, where the similarity of reproductive traits - such as flowering time - among close relatives growing together differ from when growing apart. Evidence for the overall prevalence and direction of this phenomenon, and its stability under environmental change, remains untested across large scales. Using the power of crowdsourcing, we gathered phenological information from over 40 000 herbarium specimens, and investigated displacement in flowering time across 110 animal-pollinated species in the eastern USA. Overall, flowering time displacement is not common across large scales. However, displacement is generally greater among species pairs that flower close in time, regardless of direction. Furthermore, with climate change, the flowering times of closely related species are predicted, on average, to shift further apart by the mid-21st century. We demonstrate that the degree and direction of phenological displacement among co-occurring closely related species pairs varies tremendously. However, future climate change may alter the differences in reproductive timing among many of these species pairs, which may have significant consequences for species interactions and gene flow. Our study provides one promising path towards understanding how the phenological landscape is structured and may respond to future environmental change.


Asunto(s)
Magnoliopsida , Animales , Cambio Climático , Flores , Estaciones del Año , Temperatura
14.
Nat Genet ; 53(10): 1480-1492, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34611363

RESUMEN

Higher-order chromatin structure regulates gene expression, and mutations in proteins mediating genome folding underlie developmental disorders known as cohesinopathies. However, the relationship between three-dimensional genome organization and embryonic development remains unclear. Here we define a role for bromodomain-containing protein 4 (BRD4) in genome folding, and leverage it to understand the importance of genome folding in neural crest progenitor differentiation. Brd4 deletion in neural crest results in cohesinopathy-like phenotypes. BRD4 interacts with NIPBL, a cohesin agonist, and BRD4 depletion or loss of the BRD4-NIPBL interaction reduces NIPBL occupancy, suggesting that BRD4 stabilizes NIPBL on chromatin. Chromatin interaction mapping and imaging experiments demonstrate that BRD4 depletion results in compromised genome folding and loop extrusion. Finally, mutation of individual BRD4 amino acids that mediate an interaction with NIPBL impedes neural crest differentiation into smooth muscle. Remarkably, loss of WAPL, a cohesin antagonist, rescues attenuated smooth muscle differentiation resulting from BRD4 loss. Collectively, our data reveal that BRD4 choreographs genome folding and illustrates the relevance of balancing cohesin activity for progenitor differentiation.


Asunto(s)
Diferenciación Celular , Genoma , Cresta Neural/citología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Integrasas/metabolismo , Ratones , Modelos Biológicos , Células Madre Embrionarias de Ratones/metabolismo , Células Musculares/citología , Cresta Neural/metabolismo , Unión Proteica , Dominios Proteicos , Proteolisis , Factores de Transcripción/química , Transcripción Genética , Cohesinas
16.
Nature ; 597(7877): 516-521, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34471291

RESUMEN

Biodiversity contributes to the ecological and climatic stability of the Amazon Basin1,2, but is increasingly threatened by deforestation and fire3,4. Here we quantify these impacts over the past two decades using remote-sensing estimates of fire and deforestation and comprehensive range estimates of 11,514 plant species and 3,079 vertebrate species in the Amazon. Deforestation has led to large amounts of habitat loss, and fires further exacerbate this already substantial impact on Amazonian biodiversity. Since 2001, 103,079-189,755 km2 of Amazon rainforest has been impacted by fires, potentially impacting the ranges of 77.3-85.2% of species that are listed as threatened in this region5. The impacts of fire on the ranges of species in Amazonia could be as high as 64%, and greater impacts are typically associated with species that have restricted ranges. We find close associations between forest policy, fire-impacted forest area and their potential impacts on biodiversity. In Brazil, forest policies that were initiated in the mid-2000s corresponded to reduced rates of burning. However, relaxed enforcement of these policies in 2019 has seemingly begun to reverse this trend: approximately 4,253-10,343 km2 of forest has been impacted by fire, leading to some of the most severe potential impacts on biodiversity since 2009. These results highlight the critical role of policy enforcement in the preservation of biodiversity in the Amazon.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/legislación & jurisprudencia , Sequías , Agricultura Forestal/legislación & jurisprudencia , Bosque Lluvioso , Incendios Forestales/estadística & datos numéricos , Animales , Brasil , Cambio Climático/estadística & datos numéricos , Bosques , Mapeo Geográfico , Plantas , Árboles/fisiología , Vertebrados
17.
Microsyst Nanoeng ; 7: 69, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567781

RESUMEN

Chip-to-chip and world-to-chip fluidic interconnections are paramount to enable the passage of liquids between component chips and to/from microfluidic systems. Unfortunately, most interconnect designs add additional physical constraints to chips with each additional interconnect leading to over-constrained microfluidic systems. The competing constraints provided by multiple interconnects induce strain in the chips, creating indeterminate dead volumes and misalignment between chips that comprise the microfluidic system. A novel, gasketless superhydrophobic fluidic interconnect (GSFI) that uses capillary forces to form a liquid bridge suspended between concentric through-holes and acting as a fluid passage was investigated. The GSFI decouples the alignment between component chips from the interconnect function and the attachment of the meniscus of the liquid bridge to the edges of the holes produces negligible dead volume. This passive seal was created by patterning parallel superhydrophobic surfaces (water contact angle ≥ 150°) around concentric microfluidic ports separated by a gap. The relative position of the two polymer chips was determined by passive kinematic constraints, three spherical ball bearings seated in v-grooves. A leakage pressure model derived from the Young-Laplace equation was used to estimate the leakage pressure at failure for the liquid bridge. Injection-molded, Cyclic Olefin Copolymer (COC) chip assemblies with assembly gaps from 3 to 240 µm were used to experimentally validate the model. The maximum leakage pressure measured for the GSFI was 21.4 kPa (3.1 psig), which corresponded to a measured mean assembly gap of 3 µm, and decreased to 0.5 kPa (0.073 psig) at a mean assembly gap of 240 µm. The effect of radial misalignment on the efficacy of the gasketless seals was tested and no significant effect was observed. This may be a function of how the liquid bridges are formed during the priming of the chip, but additional research is required to test that hypothesis.

18.
Nat Ecol Evol ; 5(11): 1499-1509, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34429536

RESUMEN

To meet the ambitious objectives of biodiversity and climate conventions, the international community requires clarity on how these objectives can be operationalized spatially and how multiple targets can be pursued concurrently. To support goal setting and the implementation of international strategies and action plans, spatial guidance is needed to identify which land areas have the potential to generate the greatest synergies between conserving biodiversity and nature's contributions to people. Here we present results from a joint optimization that minimizes the number of threatened species, maximizes carbon retention and water quality regulation, and ranks terrestrial conservation priorities globally. We found that selecting the top-ranked 30% and 50% of terrestrial land area would conserve respectively 60.7% and 85.3% of the estimated total carbon stock and 66% and 89.8% of all clean water, in addition to meeting conservation targets for 57.9% and 79% of all species considered. Our data and prioritization further suggest that adequately conserving all species considered (vertebrates and plants) would require giving conservation attention to ~70% of the terrestrial land surface. If priority was given to biodiversity only, managing 30% of optimally located land area for conservation may be sufficient to meet conservation targets for 81.3% of the terrestrial plant and vertebrate species considered. Our results provide a global assessment of where land could be optimally managed for conservation. We discuss how such a spatial prioritization framework can support the implementation of the biodiversity and climate conventions.


Asunto(s)
Carbono , Conservación de los Recursos Naturales , Animales , Biodiversidad , Especies en Peligro de Extinción , Humanos , Vertebrados
19.
Trends Ecol Evol ; 36(8): 709-721, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33972119

RESUMEN

Phenology, or the timing of life history events, can be heterogeneous across biological communities and landscapes and can vary across a wide variety of spatiotemporal scales. Here, we synthesize information from landscape phenology studies across different scales of measurement around a set of core concepts. We highlight why phenology is scale dependent and identify gaps in the spatiotemporal scales of phenological observations and inferences. We discuss the consequences of these gaps and describe opportunities to address the inherent sensitivities of phenological metrics to measurement scale. Although most studies we review and discuss are focused on plants, our work provides a broadly relevant overview of the role of observation scale in landscape phenology and a general approach for measuring and reporting scale dependence.


Asunto(s)
Cambio Climático , Plantas , Estaciones del Año
20.
J Obstet Gynaecol Can ; 43(11): 1292-1295, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33412303

RESUMEN

Idiopathic intracranial hypertension (IIH) is a syndrome characterized by elevated intracranial pressure without an identifiable underlying cause. Pregnancy has unique and important diagnostic and therapeutic implications for patients with IIH. Despite these implications, there are no guidelines to assist clinicians in managing IIH during pregnancy. Our review aims to summarize the key considerations related to the diagnosis and management of IIH during pregnancy, to optimize the care of these patients and mitigate the risk of disease-related complications. The optimal management of IIH in pregnancy should include a multidisciplinary team, including an obstetrician (or maternal-fetal medicine specialist), a neurologist, and an ophthalmologist (or neuro-ophthalmologist).


Asunto(s)
Seudotumor Cerebral , Femenino , Humanos , Embarazo , Seudotumor Cerebral/diagnóstico , Seudotumor Cerebral/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...