Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anticancer Res ; 43(9): 3897-3904, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648291

RESUMEN

BACKGROUND/AIM: To obtain sufficient numbers of high-quality natural killer (NK) cells, we developed feeder cells using synthetic biology techniques. MATERIALS AND METHODS: K562 cells were engineered to express membrane bound interleukin-2 (mbIL2) or interleukin-13 (mbIL13). RESULTS: The incubation of human primary NK cells isolated from peripheral blood mononuclear cells (PBMCs) with these feeder cells significantly increased the number of activated NK cells compared to K562 parental cells. Fluorescence-activated cell sorting (FACS) analysis demonstrated that NKG2D activating receptors were abundant on the surface of NK cells expanded by K562-mbIL2 or mbIL13 cells. NK cells expanded on K562-mbIL2 or mbIL13 lysed cancer cells more effectively than those cultured with normal K562 cells. Using NK cells incubated with our feeder cells, we developed anti-CD19 chimeric antigen receptor (CAR)-NK cells. They showed robust cytotoxic effect against CD19 positive cancer cell line. CONCLUSION: Our newly developed feeder cells could provide useful tools for NK cell therapy.


Asunto(s)
Células Asesinas Naturales , Leucocitos Mononucleares , Humanos , Células Nutrientes , Proliferación Celular , Células K562
2.
Sci Rep ; 13(1): 12365, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524755

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has emerged as a promising modality for anti-cancer treatment. Its efficacy is quite remarkable in hematological tumors. Owing to their excellent clinical results, gene- modified cell therapies, including T cells, natural killer (NK) cells, and macrophages, are being actively studied in both academia and industry. However, the protocol to make CAR immune cells is too complicated, so it is still unclear how to efficiently produce the potent CAR immune cells. To manufacture effective CAR immune cells, we need to be aware of not only how to obtain highly infective viral particles, but also how to transduce CAR genes into immune cells. In this paper, we provide detailed information on spinoculation, which is one of the best known protocols to transduce genes into immune cells, in a methodological view. Our data indicate that gene transduction is significantly dependent on speed and duration of centrifugation, concentration and number of viral particles, the concentration of polybrene, and number of infected immune cells. In addition, we investigated on the optimal polyethylene glycol (PEG) solution to concentrate the viral supernatant and the optimized DNA ratios transfected into 293T cells to produce high titer of viral particles. This study provides useful information for practical production of the gene-modified immune cells using viral vectors.


Asunto(s)
Vectores Genéticos , Neoplasias , Humanos , Transducción Genética , Vectores Genéticos/genética , Células Asesinas Naturales , Linfocitos T , Inmunoterapia Adoptiva/métodos
3.
Anticancer Res ; 43(8): 3419-3427, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37500142

RESUMEN

BACKGROUND/AIM: Several chimeric antigen receptor (CAR) T cells have been used to treat melanoma but have not shown favorable results. This study investigated whether Herpes virus entry mediator (HVEM), which is overexpressed in melanoma, is a potential novel antigen for CAR T cell therapy. MATERIALS AND METHODS: A CAR construct, composed of the BTLA extracellular domain for HVEM recognition (BTLA-28z), was developed and tested. RESULTS: Jurkat cells transduced with BTLA-28z exhibited enhanced IL-2 secretion when incubated with HVEM-over-expressing melanoma cells. KHYG-1 cells transduced with BTLA-28z also lysed melanoma cell lines. Using primary T cells, we generated CAR T cells targeting HVEM. BTLA-28z CAR T cells exhibited excellent lytic activities against melanoma cell lines. CONCLUSION: HVEM-targeting CAR T cells may be useful for the treatment of melanoma.


Asunto(s)
Inmunoterapia Adoptiva , Melanoma , Receptores Inmunológicos , Miembro 14 de Receptores del Factor de Necrosis Tumoral , Humanos , Línea Celular , Melanoma/terapia , Receptores Inmunológicos/metabolismo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo
4.
ACS Omega ; 7(43): 39456-39462, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36340132

RESUMEN

Three isoindolinone alkaloids (1-3), including one new isoindolinone-type alkaloid, meyeroguilline E (1), and six other known compounds (4-9) were isolated from the poisonous mushroom Chlorophyllum molybdites (Agaricaceae). The structure of the new compound was determined using extensive spectroscopic analyses via one-dimensional (1D) and two-dimensional (2D) NMR data interpretation and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). To the best of our knowledge, compound 1 is the first example of a natural isoindolinone with a butanoic acid moiety, and this study is the first to detect the other known compounds (2-9) in C. molybdites. The isolated compounds (1-9) were examined for their multidrug resistance (MDR) reversal activity against MES-SA, MES-SA/DX5, HCT15, and HCT15/CL02 human cancer cells. Based on the results, 20 µM of compounds 3 and 6 slightly potentiated paclitaxel (TAX)-induced cytotoxicity in MES-SA/DX5, HCT15, and HCT15/CL02 cells; however, the compounds had no effect on the cytotoxicity against MES-SA and nonMDR cells.

5.
Biochem Pharmacol ; 192: 114721, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34363795

RESUMEN

G protein-coupled estrogen receptor (GPER) is important for maintaining normal blood vessel function by preventing endothelial cell dysfunction. It has been reported that G-1, an agonist of GPER, increases nitric oxide (NO) production through the phosphorylation of endothelial nitric oxide synthase (eNOS). However, the effect of GPER activation on eNOS expression has not been studied. Our results show that G-1 significantly increased the expression of eNOS and Kruppel-like factor 2 (KLF2) in human endothelial EA.hy926 cells. The individual silences of KLF2 and GPER attenuated G-1-induced eNOS expression. In addition, inhibition of the Gαq and Gßγ suppressed G-1-induced the expression of eNOS and KLF2 in EA.hy926 cells. Interestingly, these effects were similar in HUVECs. Furthermore, we found that GPER-mediated Ca2+ signaling increased the phosphorylation of CaMKKß, AMPK, and CaMKIIα in the cells. The phosphorylation of histone deacetylase 5 (HDAC5) by activation of AMPK and CaMKIIα increased the expression of eNOS via transcriptional activity of KLF2. We further demonstrate that GPER activation increased the phosphorylation of Src, EGFR, ERK5, and MEF2C and consequently induced the expression of eNOS and KLF2. Meanwhile, inhibition of ERK5 and HDAC5 suppressed the expression of eNOS and KLF2 induced by G-1 in the cells. These findings suggest that GPER provides a novel mechanism for understanding the regulation of eNOS expression and is an essential therapeutic target in preventing cardiovascular-related endothelial dysfunction.


Asunto(s)
Señalización del Calcio/fisiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Señalización del Calcio/efectos de los fármacos , Ciclopentanos/farmacología , Receptores ErbB/metabolismo , Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Óxido Nítrico Sintasa de Tipo III/genética , Quinolinas/farmacología , Receptores Acoplados a Proteínas G/agonistas
6.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466670

RESUMEN

Inflammatory diseases are caused by excessive inflammation from pro-inflammatory mediators and cytokines produced by macrophages. The Nrf2 signaling pathway protects against inflammatory diseases by inhibiting excessive inflammation via the regulation of antioxidant enzymes, including HO-1 and NQO1. We investigated the anti-inflammatory effect of impressic acid (IPA) isolated from Acanthopanax koreanum on the lipopolysaccharide (LPS)-induced inflammation and the underlying molecular mechanisms in RAW264.7 cells. IPA attenuated the LPS-induced production of pro-inflammatory cytokines and reactive oxygen species, and the activation of the NF-κB signaling pathway. IPA also increased the protein levels of Nrf2, HO-1, and NQO1 by phosphorylating CaMKKß, AMPK, and GSK3ß. Furthermore, ML385, an Nrf2 inhibitor, reversed the inhibitory effect of IPA on LPS-induced production of pro-inflammatory cytokines in RAW264.7 cells. Therefore, IPA exerts an anti-inflammatory effect via the AMPK/GSK3ß/Nrf2 signaling pathway in macrophages. Taken together, the findings suggest that IPA has preventive potential for inflammation-related diseases.


Asunto(s)
Antiinflamatorios/farmacología , Lipopolisacáridos/inmunología , Macrófagos/efectos de los fármacos , Triterpenos/farmacología , Proteínas Quinasas Activadas por AMP/inmunología , Animales , Antiinflamatorios/química , Eleutherococcus/química , Glucógeno Sintasa Quinasa 3 beta/inmunología , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Macrófagos/inmunología , Ratones , Factor 2 Relacionado con NF-E2/inmunología , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Triterpenos/química
7.
J Agric Food Chem ; 68(49): 14523-14530, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33232606

RESUMEN

Betulinic acid (BA) is a natural pentacyclic triterpenoid with protective effects against inflammation, metabolic diseases, and cardiovascular diseases. We have previously shown that BA prevents endothelial dysfunction by increasing nitric oxide (NO) synthesis through activating endothelial nitric oxide synthase (eNOS) in human endothelial cells. However, the effect of BA on eNOS expression remains unclear. Thus, the aim of our study was to investigate the intracellular pathways associated with the effect of BA to regulate eNOS expression in human endothelial cells. BA significantly increased eNOS expression in a time- and concentration-dependent manner. Additionally, BA upregulated the expression of the transcription factor KLF2, which is known to regulate eNOS expression. KLF2 silencing in human endothelial cells attenuated the ability of BA to upregulate eNOS. BA also increased levels of intracellular Ca2+, activating CaMKKß, CaMKIIα, and AMPK. Inhibition of the TRPC calcium channel abolished BA-mediated effects on intracellular Ca2+ levels. Moreover, BA increased the phosphorylation levels of ERK5, HDAC5, and MEF2C. Pretreatment of cells with compound C (AMPK inhibitor), LMK235 (HDAC5 inhibitor), and XMD8-92 (ERK5 inhibitor) attenuated the BA-induced eNOS expression. Collectively, these findings suggest that BA induces eNOS expression by activating the HDAC5/ERK5/KLF2 pathway in endothelial cells. The data presented here provide strong evidence supporting the use of BA to prevent endothelial dysfunction and treat vascular diseases, such as atherosclerosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Triterpenos Pentacíclicos/farmacología , Proteínas Quinasas Activadas por AMP/genética , Línea Celular , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal/efectos de los fármacos , Ácido Betulínico
8.
J Agric Food Chem ; 68(11): 3474-3484, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32077699

RESUMEN

Sesamin, the most abundant lignan in sesame seed oil, has many biological activities. However, the underlying molecular mechanisms behind the regulatory effects of sesamin on endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) generation in endothelial cells (ECs) remain unclear. Sesamin induced the intracellular level of NO and eNOS phosphorylation in ECs in a concentration- and time-dependent manner. Additionally, sesamin induced levels of intracellular calcium, leading to the phosphorylation of calmodulin-dependent protein kinase II (CaMKII) at Thr286, calcium/calmodulin-dependent protein kinase kinase beta (CaMKKß) at Ser511, protein kinase A (PKA) at Thr197, Akt at Ser473, and AMP-activated protein kinase (AMPK) at Thr172. In particular, blocking of the transient receptor potential vanilloid type 1 (TRPV1) channel by capsazepine (TRPV1 antagonist), as well as TRPV1 knockdown via TRPV1 silencing RNA, abrogated sesamin-induced PKA, Akt, AMPK, CaMKII, CaMKKß, and eNOS phosphorylation and NO level in ECs. Furthermore, sesamin inhibited TNF-α-induced NF-κB translocation, intercellular adhesion molecule-1 expression, and monocyte adhesion. Sesamin triggered eNOS activity and NO production via activation of TRPV1-calcium signaling, which involved the phosphorylation of PKA, CaMKII, CaMKKß, Akt, and AMPK. Sesamin may be useful for treating or preventing the endothelial dysfunction correlated with cardiovascular diseases.


Asunto(s)
Lignanos , Óxido Nítrico Sintasa de Tipo III , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Dioxoles/farmacología , Células Endoteliales/metabolismo , Lignanos/farmacología , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...