Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(2): e0121323, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38231263

RESUMEN

Domestic wastewater is a source of persistent organic pollutants and pathogens to the aquatic environment, including groundwater aquifers. Wastewater contaminants include a variety of personal care products, pharmaceuticals, endocrine disrupters, bacteria, and viruses. Groundwater from 22 wells completed in a semi-confined to confined, fractured Silurian dolostone aquifer in southern Wellington County, Ontario, Canada, was analyzed for 14 organic wastewater contaminants (4 artificial sweeteners, 10 pharmaceuticals) as well as E. coli, total coliforms, and 6 human enteric viruses. Enteric viruses were detected in 8.6% of 116 samples, and at least one organic wastewater contaminant was detected in 82% of the wells (in order of decreasing detection frequency: acesulfame, ibuprofen, sulfamethoxazole, triclosan, carbamazepine, and saccharin). Virus indicator metrics [positive and negative predictive values (PPV, NPV), sensitivity, specificity] were calculated at the sample and well level for the organic wastewater compounds, E. coli, and total coliforms. Fecal bacteria were not good predictors of virus presence (PPV = 0%-8%). Of the potential chemical indicators, triclosan performed the best at the sample level (PPV = 50%, NPV = 100%), and ibuprofen performed the best at the well level (PPV = 60%, NPV = 67%); however, no samples had triclosan or ibuprofen concentrations above their practical quantification limits. Therefore, none of the compounds performed sufficiently well to be considered reliable for assessing the potential threat of enteric viruses in wastewater-impacted groundwater in this bedrock aquifer. Future studies need to evaluate the indicator potential of persistent organic wastewater contaminants in different types of aquifers, especially in fractured rock where heterogeneity is strong.IMPORTANCEAssessing the potential risk that human enteric viruses pose in groundwater aquifers used for potable water supply is complicated by several factors, including: (i) labor-intensive methods for the isolation and quantification of viruses in groundwater, (ii) the temporal variability of these viruses in domestic wastewater, and (iii) their potentially rapid transport in the subsurface, especially in fractured rock aquifers. Therefore, aquifer risk assessment would benefit from the identification of suitable proxy indicators of enteric viruses that are easier to analyze and less variable in wastewater sources. Traditional fecal indicators (e.g., E. coli and coliforms) are generally poor indicators of enteric viruses in groundwater. While many studies have examined the use of pharmaceutical and personal care products as tracers of domestic wastewater and fecal pollution in the environment, there is a paucity of data on the potential use of these chemical tracers as enteric virus indicators, especially in groundwater.


Asunto(s)
Cosméticos , Enterovirus , Agua Subterránea , Triclosán , Virus , Contaminantes Químicos del Agua , Humanos , Aguas Residuales , Escherichia coli , Ibuprofeno , Agua Subterránea/microbiología , Compuestos Orgánicos , Preparaciones Farmacéuticas , Ontario , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
2.
Environ Sci Technol ; 57(24): 8983-8993, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37285386

RESUMEN

Hydrocarbon spills that reach the subsurface can modify aquifer geochemical conditions. Biogeochemical zones typically form proximal to the source zone that include iron (Fe(III)) and manganese (Mn(III/IV)) (hydr)oxide reduction, with potential to release associated geogenic contaminants to groundwater. Here, multi-level monitoring systems are used to investigate radium (226Ra, 228Ra) activities in an aquifer contaminated with a mixture of chlorinated solvents, ketones, and aromatics occurring as a dense non-aqueous phase liquid in the source zone. 226Ra activities are up to 10 times higher than background 60 m downgradient from the source zone, where pH is lower, total dissolved solid concentrations are higher, and conditions are methanogenic. Correlations indicate that Fe and Mn (hydr)oxide reduction and sorption site competition are likely responsible for elevated Ra activities within the dissolved phase plume. 226Ra activities return to background within the Fe(III)/SO42--reducing zone 600 m downgradient from the source, near the middle of the dissolved phase plume. Geochemical models indicate that sorption to secondary phases (e.g., clays) is important in sequestering Ra within the plume. Although maximum Ra activities within the plume are well below the U.S. drinking water standard, elevated activities compared to background emphasize the importance of investigating Ra and other trace elements at hydrocarbon-impacted sites.


Asunto(s)
Agua Subterránea , Radio (Elemento) , Contaminantes Químicos del Agua , Compuestos Férricos , Contaminantes Químicos del Agua/análisis , Óxidos , Hidrocarburos
3.
J Contam Hydrol ; 250: 104075, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36115173

RESUMEN

This study aims to precisely determine the effective diffusion coefficients of chlorohydrocarbons in low permeable units under in-situ field conditions. To this end, two controlled release field experiments using TCE and PCE as dense non-aqueous phase liquids (DNAPLs) were conducted in two natural clayey deposits. Several months to years after the controlled DNAPL release, highly resolved concentration profiles were determined for the chlorohydrocarbons that had diffused into the clayey deposits. Effective diffusion coefficients for TCE and PCE were then determined by calibrating a 3D numerical and 1D analytical model, respectively, to the measured high-resolution concentration profiles. The simulations revealed that the effective diffusion coefficients vary by as much as a factor of four within the same low permeability unit being consistent with observed small-scale heterogeneities. The determined chlorohydrocarbon effective diffusion coefficients were further used to determine the equivalent thickness of DNAPL that would completely dissolve in an idealized, parallel-plate fracture by diffusion transport into clayey deposits for the time periods of the controlled release field experiments. The equivalent TCE and PCE DNAPL film thicknesses ranged between 36 and 581 µm, respectively, comparable and exceeding fracture apertures measured in naturally fractured clay rich deposits. Hence, films of DNAPL initially contained within fractures in clay-rich deposits can completely dissolve away within a few months to a few years due to diffusion. This stored contaminant mass poses a risk to adjacent aquifers if it is re-released due to diffusion out of the matrix after source depletion or remediation.


Asunto(s)
Agua Subterránea , Hidrocarburos Clorados , Tricloroetileno , Contaminantes Químicos del Agua , Arcilla , Preparaciones de Acción Retardada , Tricloroetileno/análisis , Contaminantes Químicos del Agua/análisis
4.
Sci Total Environ ; 816: 151532, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-34752872

RESUMEN

Chlorinated solvents occur as dense nonaqueous phase liquid (DNAPL) or as solutes when dissolved in water. They are present in many pollution sites in urban and industrial areas. They are toxic, carcinogenic, and highly recalcitrant in aquifers and aquitards. In the latter case, they migrate by molecular diffusion into the matrix. When aquitards are fractured, chlorinated solvents also penetrate as a free phase through the fractures. The main objective of this study was to analyze the biogeochemical processes occurring inside the matrix surrounding fractures and in the joint-points zones. The broader implications of this objective derive from the fact that, incomplete natural degradation of contaminants in aquitards generates accumulation of daughter products. This causes steep concentration gradients and back-diffusion fluxes between aquitards and high hydraulic conductivity layers. This offers opportunities to develop remediation strategies based, for example, on the coupling of biotic and reactive abiotic processes. The main results showed: 1) Degradation occurred especially in the matrix adjacent to the orthogonal network of fractures and textural heterogeneities, where texture contrasts favored microbial development because these zones constituted ecotones. 2) A dechlorinating bacterium not belonging to the Dehalococcoides genus, namely Propionibacterium acnes, survived under the high concentrations of dissolved perchloroethene (PCE) in contact with the PCE-DNAPL and was able to degrade it to trichloroethene (TCE). Dehalococcoides genus was able to conduct PCE reductive dechlorination at least up to cis-1,2-dichloroethene (cDCE), which shows again the potential of the medium to degrade chloroethenes in aquitards. 3) Degradation of PCE in the matrix resulted from the coupling of reactive abiotic and biotic processes-in the first case, promoted by Fe2+ sorbed to iron oxides, and in the latter case, related to dechlorinating microorganisms. The dechlorination resulting from these coupling processes is slow and limited by the need for an adequate supply of electron donors.


Asunto(s)
Agua Subterránea , Tricloroetileno , Cloruro de Vinilo , Contaminantes Químicos del Agua , Biodegradación Ambiental , Cloro , Tricloroetileno/análisis , Contaminantes Químicos del Agua/análisis
5.
J Contam Hydrol ; 241: 103838, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34089976

RESUMEN

This study applies innovative methods to characterize and quantify the magnitude of groundwater flow in a fractured and variably cemented sandstone aquifer to inform an in-situ remediation strategy for trichloroethene (TCE) contamination. A modified active-distributed temperature sensing (A-DTS) approach in which fiber optic cables were permanently grouted in the borehole was used to quantify groundwater flow rates. Two additional tracer tests were conducted: 1) fluorescein tracer injection followed by rock coring and sampling for visual mapping and porewater analysis, and 2) deployment of passive flux meters in conventional monitoring wells to evaluate groundwater velocity and mass flux distributions. Forced gradient injection of fluorescein tracer suggests a dual porosity flow system wherein higher rates of groundwater flow occur within discrete features including highly permeable bedding planes and fractures, with slower flow occurring within the rock matrix. Tracer was observed and detected in the unfractured matrix porewater >1.5 m away from the injection well. Beyond this distance, >6 m radially away from the injection hole, tracer was primarily detected within and adjacent to high transmissivity fractures serving as preferential flow paths. The Darcy flux calculated using active distributed temperature sensing (A-DTS) shows depth-discrete values ranging from 7 to 60 cm/day, with average and median values of 23 and 17 cm/day, respectively. Passive Flux Meters (PFMs) deployed in three conventional monitoring wells with slotted screens and sand filter packs showed groundwater flux values ranging from 2 to 11 cm/day, with an overall average of 4 cm/day and are likely biased low due to spreading in the sand pack. The study results were used to inform an in-situ remediation system design including the proposed injection well spacing and the amendment delivery approach. In addition, the results were used to build confidence in the viability of delivering an oxidant to the rock matrix via advective processes. This is important because 1) the matrix is where the majority of the TCE mass occurs, and 2) it provides insights on processes that directly affect remedial performance expectations given advective delivery to preferential pathways and the matrix overcomes diffusion only conditions.


Asunto(s)
Agua Subterránea , Tricloroetileno , Contaminantes Químicos del Agua , Difusión , Porosidad , Tricloroetileno/análisis , Contaminantes Químicos del Agua/análisis , Pozos de Agua
6.
Int J Phytoremediation ; 23(8): 846-856, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33397125

RESUMEN

Improved knowledge of the ecology of contaminant-degrading organisms is paramount for effective assessment and remediation of aromatic hydrocarbon-impacted sites. DNA stable isotope probing was used herein to identify autochthonous degraders in rhizosphere soil from a hybrid poplar phytoremediation system incubated under semi-field-simulated conditions. High-throughput sequencing of bacterial 16S rRNA and fungal internal transcribed spacer (ITS) rRNA genes in metagenomic samples separated according to nucleic acid buoyant density was used to identify putative toluene degraders. Degrader bacteria were found mainly within the Actinobacteria and Proteobacteria phyla and classified predominantly as Cupriavidus, Rhodococcus, Luteimonas, Burkholderiaceae, Azoarcus, Cellulomonadaceae, and Pseudomonas organisms. Purpureocillium lilacinum and Mortierella alpina fungi were also found to assimilate toluene, while several strains of the fungal poplar endophyte Mortierella elongatus were indirectly implicated as potential degraders. Finally, PICRUSt2 predictive taxonomic functional modeling of 16S rRNA genes was performed to validate successful isolation of stable isotope-labeled DNA in density-resolved samples. Four unique sequences, classified within the Bdellovibrionaceae, Intrasporangiaceae, or Chitinophagaceae families, or within the Sphingobacteriales order were absent from PICRUSt2-generated models and represent potentially novel putative toluene-degrading species. This study illustrates the power of combining stable isotope amendment with advanced metagenomic and bioinformatic techniques to link biodegradation activity with unisolated microorganisms. Novelty statement: This study used emerging molecular biological techniques to identify known and new organisms implicated in aromatic hydrocarbon biodegradation from a field-scale phytoremediation system, including organisms with phyto-specific relevance and having potential for downstream applications (amendment or monitoring) in future and existing systems. Additional novelty in this study comes from the use of taxonomic functional modeling approaches for validation of stable isotope probing techniques. This study provides a basis for expanding existing reference databases of known aromatic hydrocarbon degraders from field-applicable sources and offers technological improvements for future site assessment and management purposes.


Asunto(s)
Rizosfera , Suelo , Biodegradación Ambiental , Hongos/genética , Hypocreales , Isótopos , Mortierella , ARN Ribosómico 16S/genética , Microbiología del Suelo , Tolueno
7.
Environ Sci Pollut Res Int ; 28(21): 26871-26884, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33495954

RESUMEN

The presence of ecotones in transition zones between geological strata (e.g. layers of gravel and sand interbedded with layers of silt in distal alluvial fan deposits) in aquifers plays a significant role in regulating the flux of matter and energy between compartments. Ecotones are characterised by steep physicochemical and biological gradients and considerable biological diversity. However, the link between organic pollutants and degradation potential in ecotones has scarcely been studied. The aim of this study is to relate the presence of ecotones with the dehalogenation of chloroethenes. A field site was selected where chloroethene contamination occurs in a granular aquifer with geological heterogeneities. The site is monitored by multilevel and conventional wells. Groundwater samples were analysed by chemical, isotopic, and molecular techniques. The main results were as follows: (1) two ecotones were characterised in the source area, one in the upper part of the aquifer and the second in the transition zone to the bottom aquitard, where the aged pool is located; (2) the ecotone located in the transition zone to the bottom aquitard has greater microbial diversity, due to higher geological heterogeneities; (3) both ecotones show the reductive dehalogenation of perchloroethylene and trichloroethylene; and (4) these ecotones are the main zones of the reductive dehalogenation of the pollutants, given the more reductive conditions at the centre of the plume. These findings suggest that ecotones are responsible for natural attenuation, where oxic conditions prevailed at the aquifer and bioremediation strategies could be applied more effectively in these zones to promote complete reductive dehalogenation.


Asunto(s)
Agua Subterránea , Tetracloroetileno , Tricloroetileno , Contaminantes Químicos del Agua , Biodegradación Ambiental , Tricloroetileno/análisis , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Technol ; 54(24): 15829-15839, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33210923

RESUMEN

Abiotic transformation of trichloroethene (TCE) in fractured porous rock such as sandstone is challenging to characterize and quantify. The objective of this study was to estimate the pseudo first-order abiotic reaction rate coefficients in diffusion-dominated intact core microcosms. The microcosms imitated clean flow through a fracture next to a contaminated rock matrix by exchanging uncontaminated groundwater, unamended or lactate-amended, in a chamber above a TCE-infused sandstone core. Rate coefficients were assessed using a numerical model of the microcosms that were calibrated to monitoring data. Average initial rate coefficients for complete dechlorination of TCE to acetylene, ethene, and ethane were estimated as 0.019 y-1 in unamended microcosms and 0.024 y-1 in lactate-amended microcosms. Moderately higher values (0.026 y-1 for unamended and 0.035 y-1 for lactate-amended) were obtained based on 13C enrichment data. Abiotic transformation rate coefficients based on gas formation were decreased in unamended microcosms after ∼25 days, to an average of 0.0008 y-1. This was presumably due to depletion of reductive capacity (average values of 0.12 ± 0.10 µeeq/g iron and 18 ± 15 µeeq/g extractable iron). Model-derived rate coefficients and reductive capacities for the intact core microcosms aligned well with results from a previous microcosm study using crushed sandstone from the same site.


Asunto(s)
Agua Subterránea , Tricloroetileno , Contaminantes Químicos del Agua , Biodegradación Ambiental , Etano , Etilenos , Tricloroetileno/análisis , Contaminantes Químicos del Agua/análisis
9.
J Contam Hydrol ; 235: 103728, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33069942

RESUMEN

A complex mixture of dissolved organic contaminants, emanating from a many decades-old, residual, dense non-aqueous phase liquid (DNAPL) source, migrates through unconfined, moderately heterogeneous, glacial-derived sediments and sedimentary rock in a residential area of Dane County, Wisconsin, USA. A portion of this contaminant plume intersects a large man-made pond, roughly 400 m downgradient of the source zone. Depth-discrete, multilevel groundwater sampling, detailed sedimentological logs, and hydraulic head profiles were used to delineate the spatial distribution of hydraulic, geologic, organic contaminant, and redox hydrochemical conditions within the established plume along two transects immediately upgradient of the pond. Twenty-one contaminants were detected and classified into four major contaminant groups: chlorinated ethenes, chlorinated ethanes, aromatics (BTEX: benzene, toluene, ethylbenzene, xylene), and aliphatic ketones. Within the glacial sediments and shallow bedrock, zones of reductive dechlorination of chlorinated ethenes and ethanes were juxtaposed with zones of BTEX and ketone degradation. Spatial heterogeneity in the concentration and distribution of contaminant groups and redox conditions was observed over lateral distances of tens of meters and vertical distances of tens of centimeters along the two transects. Although the site was situated in a complex glacial depositional environment, lithologic and hydraulic heterogeneity surprisingly only had a modest influence on the spatial distribution of plume contaminants. Depth-discrete sampling along paired, closely spaced transects (~20 m apart) was essential to assess internal plume composition/concentration evolution along flow paths with strong attenuation over short migration distances. This study shows how paired, highly resolved transects can enhance understanding of transverse and longitudinal variability in areas where contaminant-induced redox conditions control reaction zones and strong plume attenuation.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Anciano , Etano , Geología , Humanos , Contaminantes Químicos del Agua/análisis
10.
Sci Total Environ ; 712: 135679, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-31785913

RESUMEN

In the transition zone between aquifers and aquitards, DNAPL pools of carbon tetrachloride and chloroform accumulate because of heterogeneity in this zone. Natural attenuation occurs at pools and plumes, indicating that remediation might be possible. The aims of the study were: i) to assess the role of heterogeneity in the natural attenuation of these compounds, ii) determine degradation processes within this zone, and iii) identify dechlorinating microorganisms. For this, groundwater concentrations, redox-sensitive parameters, CSIA isotopic and DGGE molecular techniques were used. The main findings at depth of the transition zone were: (1) the important key control played by heterogeneity on natural attenuation of contaminants. (2) Heterogeneity caused the highly anoxic environment and dominant sulfate-reducing conditions, which accounts for more efficient natural attenuation. (3) Heterogeneity also explains that the transition zone constitutes an ecotone. (4) The bacteria size exclusion is governed by the pore throat threshold and determines the penetration of dechlorinating microorganisms into the finest sediments, which is relevant, since it implies the need to verify whether microorganisms proposed for bioremediation can penetrate these materials. (5) Reductive dechlorination caused the natural attenuation of contaminants in groundwater and porewater of fine sediments. In the case of carbon tetrachloride, it was an abiotic process biogenically mediated by A. suillum, a bacterium capable of penetrating the finest sediments. In the case of chloroform, it was a biotic process performed by a Clostridiales bacterium, which is unable to penetrate the finest materials. (6) Both microorganisms have potential to be biostimulated to dechlorinate contaminants in the source and the plume in the transition zone. These outcomes are particularly relevant given the longevity of DNAPL sources and have considerable environmental implications as many supply wells in industrial areas exploit aquifers contaminated by chlorinated solvents emerging from DNAPL pools accumulated on the low-conductivity layers in transition zones.


Asunto(s)
Agua Subterránea , Biodegradación Ambiental , Tetracloruro de Carbono , Cloroformo , Contaminantes Químicos del Agua , Pozos de Agua
11.
Water Res ; 171: 115388, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31877474

RESUMEN

This study investigates for the first time the integrity of multiple stacked aquitards with different degrees of contaminant degradation. Aquitard integrity was assessed in a contaminated, multi-layered, alluvial aquifer-aquitard system (Ferrara, northern Italy). The system was contaminated by mixed organic contaminants of industrial origin (mostly chlorinated ethenes) that were illegally disposed in an urban dump four to five decades ago. High spatial resolution profiles of hydraulic head, geochemistry and chlorinated hydrocarbon concentrations were determined through the multi-layered system via discrete interval sampling of continuous cores and multilevel groundwater sampling, at three locations aligned along a transect adjacent to the buried waste to a maximum depth of 53 m below the water table. The profiles revealed that the two shallow aquitards had low integrity with respect to impeding downward migration of dense non-aqueous phase liquid (DNAPL), and provided little protection to the underlying aquifers against DNAPL contamination due to preferential pathways through imperceptible fractures and/or permeable micro-beds. However, both aquitards inhibited downward DNAPL migration to some extent due to DNAPL retention along its flow paths and accumulation at lower permeability interfaces, with decreasing peak concentrations at the top of successively deeper aquitard units. Moreover, both aquitards enhanced contaminant biodegradation due to the occurrence of organic rich sub-layers, influencing the contaminant plume composition, mobility and fate in the underlying and overlying aquifers. The deepest aquitard showed evidence of DNAPL accumulation at the top and slow diffusion-dominated transport consistent with 40 years of transport, suggesting higher integrity compared to the two shallower aquitards. However, the occurrence of micro-fractures and/or discontinuities in the aquitard upgradient under the dump (source) is the most likely explanation for contamination of the deepest aquifer. Analytical 1-D simulations of the diffusion profiles in the deepest aquitard revealed that DNAPL contamination down to the top of this aquitard occurred with minimal delay after DNAPL waste disposal began. The results highlight the necessity of high-resolution vertical profiling for assessing the presence of imperceptible features relevant to DNAPL migration and integrity of individual aquitards affecting organic contaminant source zone mass and phase distributions over decades.


Asunto(s)
Agua Subterránea , Hidrocarburos Clorados , Tricloroetileno , Contaminantes Químicos del Agua , Italia
12.
Sci Total Environ ; 707: 135890, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-31865073

RESUMEN

This field study evaluated the efficacy of a mature hybrid poplar phytoremediation system for the remediation of toluene in a fractured bedrock aquifer site. Phytoextraction activity of the trees and the ecology and biodegradation potential of root-colonizing bacteria that ultimately influence how much toluene is transported from the roots and phytoextracted to the aboveground point of measurement were explored. Peak-season toluene mass removal rates ranging from 313 to 743 µg/day were quantified using passive in planta contaminant sampling techniques and continuous heat dissipation transpiration measurements in tree stems. Root bacterial microbiome structure and biodegradation potential were evaluated via high-throughput sequencing and predictive metagenomic functional modelling of bacterial 16S rRNA genes in roots. Poplar roots were colonized mostly by Proteobacteria, Actinobacteria, and Bacteroidetes. Distinct, more uniform communities were observed in roots associated with trees planted in the toluene source area compared to other areas, with differences apparent at lower taxonomic levels. Significant enrichment of Streptomyces in roots was observed in the source area, implicating that genus as a potentially important poplar endophyte at toluene-impacted sites. Moreover, significantly greater aerobic toluene biodegradation capacity was predicted in these roots compared to other areas using taxonomic functional modelling. Together with passive sampling, the molecular results provided supporting evidence of biodegradation activity in the source area and contextualized the detected phytoextraction patterns. These results support the application of phytoremediation systems for aromatic hydrocarbons in environments with complex geology and demonstrate field-validated monitoring techniques to assess phytoextraction and biodegradation in these systems.


Asunto(s)
Biodegradación Ambiental , Agua Subterránea , ARN Ribosómico 16S , Tolueno , Contaminantes Químicos del Agua
13.
Sci Total Environ ; 690: 1342-1354, 2019 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-31470496

RESUMEN

Oil and gas development can result in natural gas migration into shallow groundwater. Methane (CH4), the primary component of natural gas, can subsequently react with solutes and minerals in the aquifer to create byproducts that affect groundwater chemistry. Hydro-biogeochemical processes induced by fugitive gas from leaky oil and gas wells are currently not well understood. We monitored the hydro-biogeochemical responses of a controlled natural gas release into a well-studied Pleistocene beach sand aquifer (Canadian Forces Base Borden, Ontario, Canada). Groundwater samples were collected before, during, and up to 700 days after gas injection and analyzed for pH, major and minor ions, alkalinity, dissolved gases, stable carbon isotope ratios of CO2 and CH4, and microbial community composition. Gas injection resulted in a dispersed plume of free and dissolved phase natural gas, affecting groundwater chemistry in two distinct temporal phases. Initially (i.e. during and immediately after gas injection), pH declined and major ions and trace elements fluctuated; at times increasing above baseline concentrations. Changes in the short-term were due to invasion of deep groundwater with elevated total dissolved solids entrained with the upward migration of free phase gas and, reactions that were instigated through the introduction of constituents other than CH4 present in the injected gas (e.g. CO2). At later times, more pronounced aerobic and anaerobic CH4 oxidation led to subtle increases in major ions (e.g. Ca2+, H4SiO4) and trace elements (e.g. As, Cr). Microbial community profiling indicated a persistent perturbation to community composition with a conspicuous ingrowth of taxa implicated in aerobic CH4 oxidation as well anaerobic S, N and Fe species metabolism.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea/química , Metano/análisis , Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua/análisis , Gas Natural , Ontario
14.
Water Res ; 165: 114986, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31446293

RESUMEN

In complex hydrogeological settings little is known about the extent of temporally varying redox conditions and their effect on aromatic hydrocarbon biodegradation. This study aims to assess the impact of changing redox conditions over time on aromatic hydrocarbon biodegradation in a fractured bedrock aquifer using stable isotope methods. To that end, four snapshots of highly spatio-temporally resolved contaminant and redox sensitive species concentrations, as well as stable isotope ratio profiles, were determined over a two-years time period in summer 2016, spring 2017, fall 2017 and summer 2018 in a toluene contaminated fractured bedrock aquifer. The concentration profiles of redox sensitive species and stable isotope ratio profiles for dissolved inorganic carbon (DIC) and sulfate (δ13CDIC, δ34SSO4, δ18OSO4) revealed that the aquifer alternates between oxidising (spring 2017/summer 2018) and reducing conditions (summer 2016/fall 2017). This alternation was attributed to a stronger aquifer recharge with oxygen-rich meltwater in spring 2017/summer 2018 compared to summer 2016/fall 2017. The temporally varying redox conditions coincided with various extents of toluene biodegradation revealed by the different magnitude of heavy carbon (13C) and hydrogen (2H) isotope enrichment in toluene. This indicated that the extent of toluene biodegradation and its contribution to plume attenuation was controlled by the temporally changing redox conditions. The highest toluene biodegradation was observed in summer 2016, followed by spring 2017 and fall 2017, whereby these temporal changes in biodegradation occurred throughout the whole plume. Thus, under temporally varying recharge conditions both the core and the fringe of a contaminant plume can be replenished with terminal electron acceptors causing biodegradation in the whole plume and not only at its distal end as previously suggested by the plume fringe concept. Overall, this study highlights the importance of highly temporally resolved groundwater monitoring to capture temporally varying biodegradation rates and to accurately predict biodegradation-induced contaminant attenuation in fractured bedrock aquifers.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Biodegradación Ambiental , Oxidación-Reducción , Tolueno
15.
J Contam Hydrol ; 225: 103506, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31181538

RESUMEN

Subsurface leakage of natural gas from petroleum wells can impact freshwater aquifers. Accurate prediction of gas migration in the subsurface will depend on knowledge of permeability, porosity, and flow system conditions. A series of two-dimensional numerical multi-phase flow simulations (CFbio) were conducted to investigate the role of multi-phase parameters (relative permeability and air entry pressure), flow system conditions (intrinsic permeability, anisotropy, and groundwater velocity), and geometric properties (layer thickness and layer lateral continuity) on the flow of gas-phase methane emanating from two variable-rate point sources in an unconfined sandy aquifer. Numerical simulations showed that for a homogeneous, weakly anisotropic aquifer, gas migrates almost exclusively vertically due to buoyancy, before venting to the vadose zone and atmosphere. As vertical migration became restricted through increased anisotropy, inclusion of lower-permeable layers, or increased horizontal groundwater velocity, an increase in the lateral component of gas migration was observed. This led to the formation of a broader lateral migration of the gas-phase plume and establishment of variably distributed vertical preferential flow paths, ultimately resulting in increased gas retention in the aquifer with relatively less methane reaching the vadose zone or atmosphere. The inclusion of a thin layer with moderately lower permeability (1-2 orders of magnitude) and increased air entry pressure was used to depict a fine-grained sand lens within a uniform aquifer. This subtle feature led to the formation of thin gas pools extending up- and down-gradient beneath the lens, allowing methane to travel much farther and faster than by groundwater advection alone, which is consistent with field observations during the experiment. In all scenarios investigated gas-phase methane was shown to migrate predominantly vertically due to buoyancy, until the aquitard permeability was <30% of the aquifer permeability. Our modelling demonstrates that even subtle permeability contrasts, together with capillary pressure changes demarcating grain-scale bedding, will lead to extensive lateral free-phase gas migration, and development of a more extensive and complex zone of impacted aquifer than presupposed.


Asunto(s)
Agua Subterránea , Metano , Gas Natural , Pozos de Agua
16.
Int J Phytoremediation ; 21(1): 60-69, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30648419

RESUMEN

Biodegradation is an important mechanism of action of phytoremediation systems, but performance evaluation is challenging. We applied metagenomic molecular approaches and compound-specific stable carbon isotope analysis to assess biodegradation of toluene in the vadose zone at an urban pilot field system where hybrid poplars were planted to remediate legacy impacts to an underlying shallow fractured bedrock aquifer. Carbon isotope ratios were compared spatio-temporally between toluene dissolved in groundwater and in the vapor phase. Enrichment of 13C from toluene in the vapor phase compared to groundwater provided evidence for biodegradation in the vadose zone. Total bacterial abundance (16S rRNA) and abundance and expression of degradation genes were determined in rhizosphere soil (DNA and RNA) and roots (DNA) using quantitative PCR. Relative abundances of degraders in the rhizosphere were on average higher at greater depths, except for enrichment of PHE-encoding communities that more strongly followed patterns of toluene concentrations detected. Quantification of RMO and PHE gene transcripts supported observations of active aerobic toluene degradation. Finally, spatially-variable numbers of toluene degraders were detected in poplar roots. We present multiple lines of evidence for biodegradation in the vadose zone at this site, contributing to our understanding of mechanisms of action of the phytoremediation system.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Biodegradación Ambiental , Carbono , Isótopos de Carbono , Metagenómica , ARN Ribosómico 16S , Tolueno/análisis
17.
Environ Sci Technol ; 52(24): 14321-14330, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30419165

RESUMEN

Matrix diffusion must be considered when assessing natural attenuation and remediation of chlorinated ethenes in fractured porous bedrock aquifers. In this study, intact sandstone rock and groundwater from a trichloroethene (TCE)-contaminated site were used in microcosms (maintained for approximately 600 days) to simulate a single fracture-matrix system with a chamber at the top of the core allowing advection to represent fracture flow. Diffusion-coupled degradation with and without biostimulation were evaluated and compared to crushed-rock, batch microcosms. In the diffusion-transport microcosms, lactate stimulated reductive dechlorination of TCE to cis-1,2-dichloroethene (cDCE) and sulfate reduction. Reduction of TCE to cDCE led to a higher rate of chlorinated ethene removal from the cores, likely due to higher concentration gradients, along with lower sorption and a higher diffusion coefficient for cDCE relative to TCE. Reduction of cDCE to vinyl chloride or ethene did not occur as in crushed rock microcosms, inferring an absence of Dehalococcoides in the intact cores. Abiotic transformation was evident in the core microcosms based on the appearance of acetylene and enrichment in δ13C-TCE and δ13C-cDCE. Core microcosms permit a more realistic representation of the behavior of chlorinated ethenes in water-saturated fractured porous rock by incorporating the combined influence of fracture flow and matrix diffusion on transport and transformation.


Asunto(s)
Agua Subterránea , Tricloroetileno , Contaminantes Químicos del Agua , Biodegradación Ambiental , Etilenos
18.
J Contam Hydrol ; 218: 110-119, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30342835

RESUMEN

Dissolved phase contaminants, transported by diffusion into the low permeability matrix of fractured sedimentary rock, pose a challenge to groundwater cleanup efforts because this stored mass may persist even when the upgradient source zone is removed. In this context, if contaminant biodegradation takes place within the low permeability matrix, plume persistence may be substantially reduced. Therefore, it is important to characterize microbial communities within the low permeability, rock matrix pores, instead of only from groundwater samples, which represent biomass from fast flowing fractures. This research relies on depth-discrete data from both core and groundwater samples collected from two locations representing a mid-plume and plume front condition within an aged, mixed organic contaminant plume in a sedimentary rock aquifer. Results from multiple analyte measurements on rock and groundwater indicate that biodegradation in the lower permeability matrix of fractured sedimentary rocks and the microbial consortia is spatially variable due to differences in hydrochemistry, redox conditions, and contaminant concentrations. Dechlorinating microorganisms were detected in the sandstone matrix at both locations, but the detected microbial diversity calculated with PCR-DGGE was significantly higher in samples collected from the core located closer to the source zone, where contaminant concentrations are higher and contaminant compositions more diverse, compared to samples from the plume front location.


Asunto(s)
Biodegradación Ambiental , Agua Subterránea , Microbiota , Difusión , Agua Subterránea/química , Halogenación , Contaminantes Químicos del Agua/análisis
19.
Sci Total Environ ; 622-623: 1178-1192, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29890586

RESUMEN

Fugitive gas comprised primarily of methane (CH4) with traces of ethane and propane (collectively termed C1-3) may negatively impact shallow groundwater when unintentionally released from oil and natural gas wells. Currently, knowledge of fugitive gas migration, subsurface source identification and oxidation potential in groundwater is limited. To advance understanding, a controlled release experiment was performed at the Borden Research Aquifer, Canada, whereby 51m3 of natural gas was injected into an unconfined sand aquifer over 72days with dissolved gases monitored over 323days. During active gas injection, a dispersed plume of dissolved C1-3 evolved in a depth discrete and spatially complex manner. Evolution of the dissolved gas plume was driven by free-phase gas migration controlled by small-scale sediment layering and anisotropy. Upon cessation of gas injection, C1-3 concentrations increased to the greatest levels observed, particularly at 2 and 6m depths, reaching up to 31.5, 1.5 and 0.1mg/L respectively before stabilizing and persisting. At no time did groundwater become fully saturated with natural gas at the scale of sampling undertaken. Throughout the experiment the isotopic composition of injected methane (δ13C of -42.2‰) and the wetness parameter (i.e. the ratio of C1 to C2+) constituted excellent tracers for the presence of fugitive gas at concentrations >2mg/L. At discrete times C1-3 concentrations varied by up to 4 orders of magnitude over 8m of aquifer thickness (e.g. from <0.01 to 30mg/L for CH4), while some groundwater samples lacked evidence of fugitive gas, despite being within 10m of the injection zone. Meanwhile, carbon isotope ratios of dissolved CH4 showed no evidence of oxidation. Our results show that while impacts to aquifers from a fugitive gas event are readily detectable at discrete depths, they are spatially and temporally variable and dissolved methane has propensity to persist.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea/química , Gas Natural/análisis , Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua/análisis , Canadá , Gases , Metano/análisis , Propano
20.
J Contam Hydrol ; 214: 75-86, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29907430

RESUMEN

A straddle-packer system for use in boreholes in fractured rock was modified to investigate the average linear groundwater velocity (v¯f) in fractures under ambient flow conditions. This packer system allows two different tests to be conducted in the same interval between packers without redeploying the system: (1) forced gradient hydraulic tests to determine the interval transmissivity (T), and (2) borehole dilution experiments to determine the groundwater flow rate (Qt) across the test interval. The constant head step test method provides assurance that flow is Darcian when determining T for each interval and identifies the flow rate at the onset of non-Darcian flow. The critical Reynolds number method uses this flow rate to provide the number of hydraulically active fractures (N) in each interval, the average hydraulic aperture for the test interval and the effective bulk fracture porosity. The borehole dilution method provides Qt values for the interval at the time of the test, and v¯f can be estimated from Qt using the flow area derived from the hydraulic tests. The method was assessed by application to seven test intervals in a borehole 73 m deep in a densely fractured dolostone aquifer used for municipal water supply. The critical Reynolds number method identified one or two fractures in each test interval (1.1 m long), which provided v¯f values in the range of 10 to 8000 m/day. This velocity range is consistent with values reported in the literature for ambient flow in this aquifer. However, when hydraulically active fractures in each interval is identified and measured from acoustic and optical televiewer logs, the calculated v¯f values are unreasonably low as are the calculated values of the hydraulic gradient needed to provide the Qt value for each tested interval. The combination of hydraulic and dilution tests in the same interval is an improved method to obtain values of groundwater velocity in fractured rock aquifers.


Asunto(s)
Agua Subterránea , Movimientos del Agua , Abastecimiento de Agua , Modelos Teóricos , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA