Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bull Environ Contam Toxicol ; 108(3): 507-517, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34255107

RESUMEN

Earlier investigations on biological methods of wastewater treatment have revealed that algal based wastewater treatment could be a green, cost effective and efficient approach for the removal of heavy metals. So, this study aimed to assess the potential of microalga Chlorella pyrenoidosa for remediation of heavy metals (Cr, Cu, Pb, Zn, Cd, Mn, and Ni) from varying concentration (25%, 50%, 75 and 100%) of wastewater collected from Common Effluent Treatment Plant. Heavy metals such as Cr, Cu, Pb, Zn, Cd, Mn, and Ni have been removed significantly from the wastewater, with percentage removal ranging from 73%, 60%, 75%, 66%, 87%, 83%, and 74% with 50% test solution, 57%, 59%, 70%, 56%, 72%, 66%, and 62% with 75% test solution, and 47%, 55%, 56%, 71%, 61%, 77%, and 72% with 100% test solution respectively. Studies on biochemical assay (protein, carbohydrate, and pigment) of Chlorella pyrenoidosa were also an important part of the present investigation to understand the interaction of heavy metals with algal biochemical compounds using Pearson correlation co-efficient. Biomass grown in CETP wastewater can be used for synthesis of various fruitful value-added end products like bio-diesel, pharmaceutical products, cosmetic products, bio-adsorbent etc.


Asunto(s)
Chlorella , Metales Pesados , Purificación del Agua , Biomasa , Metales Pesados/análisis , Aguas Residuales
2.
J Environ Manage ; 231: 562-569, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388653

RESUMEN

An experimental study was performed to evaluate the comparative efficiency of bio-flocculant (waste egg shell), laboratory available calcium carbonate (LACC) and alum (Al2 (SO4)3) for harvesting of unicellular microalga, Chlorella pyrenoidosa. The influence of pH on zeta potential (ζ) was also studied to explain the chemistry of flocculation process. The maximum harvesting efficiency (99%) was obtained with alum with deformities in algal cell surfaces. Waste egg-shell material is developed as a low-cost bio-flocculant for harvesting of Chlorella pyrenoidosa using 100 mg egg-shell bio-flocculant/L and 100 mg LACC/L, zeta potential analysis was completed to further understand the chemistry of harvesting efficiency over the different ranges of pH (2.0, 4.0, 6.0, 8.0, and 10.0). The optimized range for harvesting efficiency (HE) of pH is 4.0-8.0 for both flocculants. Maximal harvesting efficiency was achieved at pH 4.0 (99%) and pH 8.0 (95%) with bio-flocculant and LACC respectively. Hence, bio-flocculant based harvesting method is found as the best way to dewatering the algal biomass from aqueous medium with entire and intact algal cell surface with environment friendly and cost-effective approach.


Asunto(s)
Chlorella , Microalgas , Biomasa , Floculación , Agua
3.
3 Biotech ; 8(8): 326, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30034990

RESUMEN

The present study illustrates optimization and synergetic potential of alga Chlorella pyrenoidosa for lipid production and remediation of Dairy industry wastewater (DIWW) through response surface methodology (RSM). Maximum lipid productivity of 34.41% was obtained under 50% DIWW supplemented with 0 mg L-1 nitrate (NO3-), and 50 mg L-1 phosphate (PO4-3). While maximum biomass productivity (1.54 g L-1) was obtained with 50% DIWW supplemented with 100 mg L-1 NO3-, and 50 mg L-1, PO4-3. Maximum removal of COD (43.47%), NO3- (99.80%) and PO4-3 (98.24%) was achieved with 8th run (75% DIWW, 150 mg L-1 NO3-, 75 mg L-1 PO4-3), 15th run (50% DIWW, 0 mg L-1 NO3-, 50 mg L-1, PO4- 3) followed by 1st run (25% DIWW, 50 mg L-1 NO3-, and 25 mg L-1, PO4-3), respectively. Lipid (bio-oil) obtained from 15th run of experiment was converted in biodiesel through base catalyze transesterification process. Fatty acid methyl ester (FAME) analysis of biodiesel confirmed the presence of major fatty acids in C. pyrenoidosa grown in DIWW were C11:0, C14:0, C16:0, C16:1, C18:1 and C18:2. Results of study clearly demonstrate enhanced growth and lipid accumulation by C. pyrenoidosa in surplus PO4-3 and limitation of NO3- sources with DIWW and its suitability as potential alternative for commercial utilization.

4.
3 Biotech ; 8(1): 34, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29291147

RESUMEN

Wild strains of algal biomass, a major contributor for eutrophication in freshwater bodies, can be used as a potential substrate in association with other nutrient-rich biowaste materials like animal excreta and industrial wastewater, for biogas production. This novel concept was experimentally evaluated and analyzed by the modified Gompertz equation for maximum biogas production (µm), lag phase (λ), and biogas yield (P). The value of correlation coefficient (R2) was 0.99 at varying temperature ranges (30, 40, and 50 °C). Thermodynamic functions like enthalpy (∆H), entropy (∆S), and Gibb's free energy (∆G) were evaluated for the chemical oxygen demand removal efficiency. Thermodynamic functions such as ∆G (-), ∆H (+), and ∆S (+) showed the spontaneous and endothermic nature of substrate degradation and biogas production was found to be increased with increasing temperature. So, this novel co-digestion approach using nutrient-rich biowaste materials provides a new insight into biogas production with the aim of waste-to-energy generation.

5.
3 Biotech ; 7(4): 243, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28707276

RESUMEN

The present review focuses on the cultivation of algal biomass for generating value-added products (VAP) and to assess their economic benefits and harmful environmental impact. Additionally, the impact of bioreactor designs on the yield of microalgal biomass for VAP is also considered. All these factors are discussed in relation to the impact of microalgae production on the bio-economy sector of commercial biotechnology.

6.
Front Biosci (Landmark Ed) ; 22(8): 1195-1220, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28199201

RESUMEN

Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.


Asunto(s)
Fermentación , Hidrógeno/metabolismo , Bacterias Anaerobias/metabolismo , Fuentes de Energía Bioeléctrica/microbiología , Bioingeniería , Reactores Biológicos/microbiología , Procesos Fototróficos , Energía Renovable
7.
Bioresour Technol ; 225: 84-89, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27886633

RESUMEN

In this study, harvesting efficiency (HE) of bioflocculant (egg shell) was observed with variation in flocculent concentrations (0-100mgL-1), temperature (30°C, 35°C 40°C, 45°C and 50°C) and variable contact time (0-50min). It was found maximum (≈95.6%) with 100mgL-1 bioflocculant concentration whereas influence of temperature was also observed with optimized concentration of bioflocculant (100mgL-1) at 40°C (≈98.1%) and 50°C (≈99.3%), in 30min of contact time. Significant changes in algal cell structures were also analyzed after exposure to various temperatures with microscopy, SEM (Scanning electron microscopy) and EDS (Energy dispersive X-ray spectroscopy) images with and without bioflocculant. The experimental data was found to be a good fit with pseudo-second order kinetic model. The thermodynamic functions such as ΔG (Gibbs free energy), ΔH (enthalpy), ΔS (entropy) were also determined. The negative value of ΔG and positive value of ΔH and ΔS shows the spontaneous and endothermic nature of flocculation process.


Asunto(s)
Biotecnología/métodos , Chlorella/química , Biotecnología/economía , Chlorella/citología , Chlorella/crecimiento & desarrollo , Costos y Análisis de Costo , Entropía , Floculación , Cinética , Microscopía Electrónica de Rastreo , Espectrometría por Rayos X , Temperatura , Termodinámica
8.
J Environ Manage ; 163: 270-7, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26349408

RESUMEN

Potential of Chlorella pyrenoidosa was experimentally investigated for phycoremediation and dye removal from textile wastewater (TWW) in batch cultures. Growth of alga was observed at various concentration of textile wastewater (25%, 50%, 75% and 100%) and was found in a range of 8.1-14 µg ml(-1) day(-1). Growth study revealed that alga potentially grows up to 75% concentrated textile wastewater and reduces phosphate, nitrate and BOD by 87%, 82% and 63% respectively. Methylene blue dye (MB) removal was also observed by using dry and wet algal biomass harvested after phycoremediation. Adsorption isotherms (Langmuir and Freundlich) and kinetic models (pseudo first and second order) were applied on adsorption process. Dry algal biomass (DAB) was found more efficient biosorbent with large surface area and showed high binding affinity for MB dye in compare to wet algal biomass (WAB). The RL value for both biosorbent showed feasible adsorption process as the obtained value was between 0 and 1. Pseudo second order kinetic model with high degree of correlation coefficient and low sum of error squares (SSE %) value was found more suitable for representation of adsorption process in case of both biosorbents, however pseudo first order also showed high degree of correlation for both biosorbents.


Asunto(s)
Chlorella/metabolismo , Azul de Metileno/farmacocinética , Textiles , Aguas Residuales/química , Contaminantes Químicos del Agua/farmacocinética , Adsorción , Biodegradación Ambiental , Biomasa , Residuos Industriales , Cinética , Azul de Metileno/análisis , Modelos Teóricos , Nitratos/análisis , Nitratos/metabolismo , Fosfatos/análisis , Fosfatos/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis
9.
Bioresour Technol ; 116: 466-70, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22525258

RESUMEN

This communication presents an integrated approach to study the potential of Chlorella pyrenoidosa for treatment of dairy wastewater (DWW) and biofuel extraction. The experiment was set up in two steps. The step-1 of the experiment was designed for treatment of dairy wastewater. The physical and chemical parameters of wastewater quality such as nitrate, phosphate, chloride, fluoride, hardness, etc., were studied. The level of nitrate and phosphate known, agents of eutrophication in water bodies was reduced by 60% and 87% in influent, 49% and 83% in the effluent, respectively. The step-2 of the experiment was designed for biofuel extraction by harvesting the biomass (algal strain) grown in dairy waste water. The result of this study shows that algal strain C. pyrenoidosa is not only an agent for mitigation of pollutant load, but it can also be used as potential agent for biofuel production.


Asunto(s)
Biocombustibles/análisis , Chlorella/citología , Chlorella/crecimiento & desarrollo , Industria Lechera , Eliminación de Residuos Líquidos , Purificación del Agua/métodos , Biomasa , Color , Concentración de Iones de Hidrógeno , Nefelometría y Turbidimetría , Contaminantes Químicos del Agua/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...