Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes ; 54(10): 2925-31, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16186394

RESUMEN

As the rate-limiting controller of glucose metabolism, glucokinase represents the primary beta-cell "glucose sensor." Inactivation of both glucokinase (GK) alleles results in permanent neonatal diabetes; inactivation of a single allele causes maturity-onset diabetes of the young type 2 (MODY-2). Similarly, mice lacking both alleles (GK(-/-)) exhibit severe neonatal diabetes and die within a week, whereas heterozygous GK(+/-) mice exhibit markedly impaired glucose tolerance and diabetes, resembling MODY-2. Glucose metabolism increases the cytosolic [ATP]-to-[ADP] ratio, which closes ATP-sensitive K(+) channels (K(ATP) channels), leading to membrane depolarization, Ca(2+) entry, and insulin exocytosis. Glucokinase insufficiency causes defective K(ATP) channel regulation, which may underlie the impaired secretion. To test this prediction, we crossed mice lacking neuroendocrine glucokinase (nGK(+/-)) with mice lacking K(ATP) channels (Kir6.2(-/-)). Kir6.2 knockout rescues perinatal lethality of nGK(-/-), although nGK(-/-)Kir6.2(-/-) animals are postnatally diabetic and still die prematurely. nGK(+/-) animals are diabetic on the Kir6.2(+/+) background but only mildly glucose intolerant on the Kir6.2(-/-) background. In the presence of glutamine, isolated nGK(+/-)Kir6.2(-/-) islets show improved insulin secretion compared with nGK(+/-)Kir6.2(+/+). The significant abrogation of nGK(-/-) and nGK(+/-) phenotypes in the absence of K(ATP) demonstrate that a major factor in glucokinase deficiency is indeed altered K(ATP) signaling. The results have implications for understanding and therapy of glucokinase-related diabetes.


Asunto(s)
Diabetes Mellitus/enzimología , Glucoquinasa/deficiencia , Canales de Potasio de Rectificación Interna/fisiología , Transducción de Señal , Animales , Animales Recién Nacidos , Glucemia/análisis , Cruzamientos Genéticos , Diabetes Mellitus/genética , Diabetes Mellitus/mortalidad , Genotipo , Glucoquinasa/fisiología , Glutamina/farmacología , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/enzimología , Islotes Pancreáticos/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canales de Potasio de Rectificación Interna/deficiencia
2.
Diabetes ; 53(12): 3159-67, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15561946

RESUMEN

ATP-sensitive K+ channels (K(ATP) channels) control electrical activity in beta-cells and therefore are key players in excitation-secretion coupling. Partial suppression of beta-cell K(ATP) channels in transgenic (AAA) mice causes hypersecretion of insulin and enhanced glucose tolerance, whereas complete suppression of these channels in Kir6.2 knockout (KO) mice leads to hyperexcitability, but mild glucose intolerance. To test the interplay of hyperexcitability and dietary stress, we subjected AAA and KO mice to a high-fat diet. After 3 months on the diet, both AAA and KO mice converted to an undersecreting and markedly glucose-intolerant phenotype. Although Kir6.2 is expressed in multiple tissues, its primary functional consequence in both AAA and KO mice is enhanced beta-cell electrical activity. The results of our study provide evidence that, when combined with dietary stress, this hyperexcitability is a causal diabetic factor. We propose an "inverse U" model for the response to enhanced beta-cell excitability: the expected initial hypersecretion can progress to undersecretion and glucose-intolerance, either spontaneously or in response to dietary stress.


Asunto(s)
Intolerancia a la Glucosa/fisiopatología , Islotes Pancreáticos/fisiopatología , Canales de Potasio de Rectificación Interna/fisiología , Animales , Glucemia/metabolismo , Intolerancia a la Glucosa/tratamiento farmacológico , Insulina/sangre , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio de Rectificación Interna/genética
3.
J Mol Biol ; 327(3): 719-34, 2003 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-12634064

RESUMEN

The high-affinity inhibition of stromelysin 1 (MMP-3) by tissue inhibitor of metalloproteinases 1 (TIMP-1) helps control tissue remodeling and tumor development. The interaction of N-TIMP-1 with the catalytic domain of MMP-3 has been investigated by titration calorimetry and 15N NMR. Their unfavorable enthalpy of binding of +6.5 kcal mol(-1) is unusual among protein-protein associations, deviates from structure-based prediction, and is compensated by a net entropy increase providing at least 18 kcal mol(-1) of favorable free energy of binding at a 1M reference state. The small heat capacity of binding agrees well with the heat capacity predicted from 65% of the surface buried on binding being polar, and suggests that the hydrophobic effect can account for only part of the entropy of binding. Using NMR, binding-induced changes in the backbone of N-TIMP-1 were checked as one possible source of conformational entropy changes. MMP binding slightly increases rigidity in some contact sites in TIMP-1 but increases mobility remotely in the otherwise rigid beta-barrel core of N-TIMP-1, increasing 15N relaxation evidence of pico- to nanosecond and micro- to millisecond fluctuations of beta-strands A-F. Residual dipolar couplings suggest dynamic deviations from X-ray coordinates of the complex. These suggest that the beta-barrel has small backbone conformational fluctuations, while segments of strands betaB, betaE and betaF might experience fluctuations only in their backbone environment. This is a distinctive example of affinity between two well-structured proteins being enhanced by increased conformational entropy in the reservoir of a folding core.


Asunto(s)
Metaloproteinasa 3 de la Matriz/química , Inhibidor Tisular de Metaloproteinasa-1/química , Fenómenos Biofísicos , Biofisica , Calorimetría , Entropía , Calor , Humanos , Espectroscopía de Resonancia Magnética , Metaloproteinasa 3 de la Matriz/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Temperatura , Termodinámica , Inhibidor Tisular de Metaloproteinasa-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...