Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(45): 42976-42986, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38024669

RESUMEN

The exclusive properties of ionic liquids (ILs) offer various opportunities to develop advanced materials with appreciable therapeutic applications. Imidazolium-based ILs have been frequently used as reaction media and stabilizers for the development and surface functionalization of noble metal nanoparticles (NPs). This study reports the citrate-mediated reduction of silver ions in three different ILs, that is, 1-ethyl-3-methylimidazolium methyl sulfate ([EMIM][MS]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM][OTf]), and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][TFSI]). The resulting Ag-ILs NPs were characterized using many analytical techniques, including UV-visible spectroscopy, dynamic light scattering (DLS), scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction (XRD). DLS and XRD characterization revealed the negatively charged Ag-[EMIM][MS] NPs, Ag-[BMIM][OTf] NPs, and Ag-[BMIM][TFSI] NPs with mean hydrodynamic sizes of 278, 316, and 279 nm, respectively, and a face-centered cubic structure. These hybrid nanomaterials were subjected to in vitro antibacterial screening against three bacterial strains. The Ag-[BMIM][OTf] NPs exhibited significant activities against Escherichia coli, Staphylococcus aureus, and Enterobacter cloacae. The lowest inhibition concentration of 62.5 µg/mL was recorded against E. coli using Ag-[EMIM][MS] and Ag-[BMIM][OTf] NPs. Further, the density functional theory calculations carried out on the computed Ag-ILs in the gas phase and water showed relatively stable systems. Ag-[BMIM][TFSI] exhibited the lowest Gibbs free energy change of -34.41 kcal/mol. The value of the global electrophilicity index (ω = 0.1865 eV) for the Ag-[BMIM][OTf] correlated with its good antibacterial activity.

2.
Curr Drug Targets ; 24(4): 332-360, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36578256

RESUMEN

BACKGROUND: The liver is one of the crucial organs in humans and is responsible for the regulation of diverse processes, including metabolism, secretion, and detoxification. Ingestion of alcohol and drugs, environmental pollutants, and irradiation are among the risk factors accountable for oxidative stress in the liver. Plant flavonoids have the potential to protect the liver from damage caused by a variety of chemicals. OBJECTIVE: The present study aims to summarize up-to-date information on the protective roles of plant flavonoids against liver damage. METHODOLOGY: The literature information on the hepatoprotective plant flavonoids was assessed through various databases, which were searched from their respective inception until March 2022. RESULTS: More than 70 flavonoids with hepatoprotective activity against a variety of models of liver toxicity have been reported across the literature. Among these are flavones (19), flavonols (30), flavanones (9), isoflavonoids (5), and biflavonoids (2). Several hepatoprotective mechanisms of action were reported in various classes of flavonoids, including flavones and flavonols (upregulation of the pro-survival ERK1/2 pathway; downregulation of apoptotic proteins, including Bax, Bcl-2, Bax, BH3, caspase-3, 8, 9, etc.), flavanones (downregulation of NF-κB, TNF-α, IL-1 ß, IL-6, iNOS, etc.), isoflavonoids (downregulation of lipogenesis genes, such as SREBP-1c, LXRα, RXRα, PPARγ and ACC2, with concomitant upregulation of genes involved in ß-oxidation, including AMPK and PPARα; inhibition of CYPs, such as CYP1A1, CYP1A2, CYP2B1, CYP2D6, CYP2E1 and CYP3A1/2). CONCLUSION: The present work demonstrated the effectiveness of plant flavonoids against hepatic damage. However, more studies need to be performed regarding the cytotoxicity, pharmacokinetics, and mechanisms of action of these very important cytoprotective flavonoids.


Asunto(s)
Flavanonas , Flavonas , Humanos , Flavonoides/farmacología , Flavonoides/uso terapéutico , Proteína X Asociada a bcl-2/metabolismo , Hígado/metabolismo , Flavonoles/metabolismo , Flavonas/metabolismo , Flavanonas/metabolismo
3.
Curr Drug Targets ; 23(1): 33-59, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33845739

RESUMEN

BACKGROUND: Chagas disease is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi and is transmitted to humans through the excreta of infected blood-sucking triatomine bugs. According to the World Health Organization, 6 to 7 million people are infected with T. cruzi worldwide, mainly in Latin America, with more than 10000 deaths annually. AIM OF THE STUDY: The present study aims to provide comprehensive literature information on the importance of triazole-containing heterocycles in developing anti-Chagas disease agents. METHODOLOGY: The embodied information was acquired without date limitation by December 2020 using various electronic databases including, SciFinder, PubMed (National Library of Medicine), Science Direct, Wiley, ACS (American Chemical Society), SciELO (Scientific Electronic Library Online), Google Scholar, Springer, Scopus, and Web of Science. RESULTS: Upon in vitro studies, more than 100 triazole-containing heterocycles have been predicted as active compounds against the pathogen responsible for the American trypanosomiasis. However, less is known about their in vivo activity in animal models and their clinical studies in humans. Moreover, the pharmacokinetic studies of these bioactive compounds are still pending. Despite the variety of mechanisms of action attributed to most of these molecules, the exact mechanism involved is still controversial. Thus, in vivo experiments, followed by pharmacokinetics, and the mechanism of action of the most active compounds, should be the subject of future investigation. CONCLUSION: All in all, recent studies have demonstrated the importance of triazole-containing heterocycles in search of potential candidates for drug development against Chagas disease. Nonetheless, the use of new catalysts and chemical transformations is expected to provide avenues for the synthesis of unexplored triazole derivatives, leading to the development of triazole-containing compounds with new properties and trypanocidal activity.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Enfermedad de Chagas/tratamiento farmacológico , Desarrollo de Medicamentos , Humanos , Triazoles/farmacología , Triazoles/uso terapéutico
4.
Polymers (Basel) ; 13(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34771356

RESUMEN

This investigation reports the in situ growth of silver nanoparticles onto covalently bonded graphene oxide-chitosan, which serve as supported nanocatalysts for the NaBH4 reduction of 2,4-dinitrophenol in aqueous systems. Fumaryl chloride reacted with chitosan in an acidic environment to yield a tailored polymeric material. The latter was, in turn, treated with the pre-synthesised graphene oxide sheets under acidic conditions to generate the GO-functionalised membrane (GO-FL-CS). The adsorption of Ag+ from aqueous media by GO-FL-CS yielded a set of membranes that were decorated with silver nanoparticles (Ag NPs@GO-FL-CS) without any reducing agent. Various analytical tools were used to characterise these composites, including Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area analysis, X-ray diffraction, scanning electron microscopy/energy-dispersive X-ray analysis, inductively coupled plasma-mass spectrometry, and transmission electron microscopy. The silver-loaded materials were further used for the remediation of 2,4-dinitrophenol from aqueous solutions under batch operation. The BET analysis revealed that the functionalisation of GO with chitosan and Ag NPs (average size 20-60 nm) resulted in a three-fold increased surface area. The optimised catalyst (Ag mass loading 16.95%) displayed remarkable activity with an apparent pseudo-first-order rate constant of 13.5 × 10-3 min-1. The cyclic voltammetry experiment was conducted to determine the nitro-conversion pathway. The reusability/stability test showed no significant reduction efficiency of this metal-laden composite over six cycles. Findings from the study revealed that Ag NPs@GO-FL-CS could be employed as a low-cost and recyclable catalyst to convert toxic nitroaromatics in wastewater.

5.
J Environ Manage ; 280: 111809, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33360556

RESUMEN

Despite the importance of chromium (Cr) in most anthropogenic activities, the subsequent environmental adulteration is now a source of major concern. Cr occurs in numerous oxidation states, with the furthermost stable and frequently occur states being Cr(0), Cr(III) and Cr(VI). Cr(0) and Cr(III) are vital trace elements while Cr(VI) is dispensable and noxious to living organisms. Predominantly in plants, Cr at low concentrations of about 0.05-1 mg/L assist to boost growth as well as increase productivity. However, accumulation of Cr could represent a potential threat to living organisms. Cr absorption, displacement and accretion depend on its speciation, which also determines its toxicity which is often diverse. Indications of its toxicity include; reduction of seed germination, retardation of growth, reduction of yield, inhibition of enzymatic activities, weakening of photosynthesis, nutrient, oxidative disparities and genetic mutation in plants as well as several injurious diseases in animals and humans. In this study, we have presented a comprehensive review as well as an informative account of the influence of Cr on the environment drawn from researches carried out over the years following an analytical approach. Uniquely, this work presents a review of the effects and remediation of Cr from soil and wastewater drawn from several evidence and meta-data-based articles and other publications. Accordingly, the write-up is intended to appeal to the consciousness of the general public that the significance of Cr notwithstanding, its environmental toxicity should not be taken for granted.


Asunto(s)
Cromo , Contaminantes del Suelo , Animales , Cromo/análisis , Cromo/toxicidad , Humanos , Suelo , Contaminantes del Suelo/toxicidad , Aguas Residuales
6.
Molecules ; 21(10)2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27754446

RESUMEN

Herein, we describe the synthesis of novel unsymmetrical polycarbo-substituted 4-anilinoquinazolines derived from the 2-aryl-6-bromo-8-iodoquinazolines via one-pot three-step reaction sequences involving initial amination and subsequent double cross-coupling (bis-Suzuki, Sonogashira/Stille or Sonogashira/Suzuki-Miyaura) reactions with different cross coupling partners for the two carbon-carbon bond formation steps. The 4-anilinoquinazolines were evaluated for potential cytotoxicity against three cancer cell lines, namely, human breast adenocarcinoma (MCF-7) cells, human cervical cancer (HeLa) and human lung cancer (A549) cells. The most active compounds, 2b, 2c, 3c, 4a, 4c and 5a, were found to be more selective against the MCF-7 and HeLa cell lines than the human lung carcinoma (A549) cells. We selected compounds 2c, 3c and 7a as representatives for further evaluation for potential to induce apoptosis and/or necrotic properties in the three cancer cell lines. Compound 2c induced apoptosis of MCF-7 cells through cell membrane alteration. Treatment of Hela and A549 cell lines with compounds 3c and 7a, respectively, led to caspase-3 activation in both cell lines. Compound 3c, on the other hand, caused more necrosis than apoptosis induction in the membrane alteration assay.


Asunto(s)
Antineoplásicos/síntesis química , Imidazoles/síntesis química , Quinazolinas/síntesis química , Antineoplásicos/farmacología , Apoptosis , Caspasa 3/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Imidazoles/farmacología , Células MCF-7 , Quinazolinas/farmacología
7.
Molecules ; 20(8): 14656-83, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26287133

RESUMEN

The reactivity of the 2-aryl-4-chloro-6-iodoquinazolines towards palladium catalyzed sequential (Sonogashira/Suzuki-Miyaura) and one-pot two-step cross-coupling (bis-Sonogashira, and successive Sonogashira/Stille) reactions to afford novel unsymmetrical polycarbo-substituted quinazolines has been evaluated. In contrast to the chloro-bromo substituted quinazolines in which selectivity has been previously found to generally favor substitution at the more activated C(4)-Cl bond over the weaker Csp(2)-Br bond, substitution in the case of the chloro-iodo derivatives favors cross-coupling through the intrinsically more reactive Csp(2)-I bond. The electronic absorption and emission properties of the prepared 2,3-diaryl-6-(phenylethynyl)quinazolines were studied in solvents of different polarity (dichloromethane, toluene, DMF, methanol) and CH2Cl2-TFA mixture using UV-Vis and emission spectroscopic techniques complemented with density functional theory method to establish the effect of substituents on intramolecular charge transfer properties.


Asunto(s)
Quinazolinas/química , Catálisis , Hidrocarburos Yodados/síntesis química , Hidrocarburos Yodados/química , Modelos Moleculares , Estructura Molecular , Paladio/química , Procesos Fotoquímicos , Quinazolinas/síntesis química , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...