Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(8): e0108324, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39041797

RESUMEN

Oil spills are a frequent perturbation to the marine environment that has rapid and significant impacts on the local microbiome. Previous studies have shown that exposure to synthetic dispersant alone did not enhance heterotrophic microbial activity or oxidation rates of specific hydrocarbon components but increased the abundance of some taxa (e.g., Colwellia). In contrast, exposure to oil, but not dispersants, increased the abundance of other taxa (e.g., Marinobacter) and stimulated hydrocarbon oxidation rates. Here, we advance these findings by interpreting metatranscriptomic data from this experiment to explore how and why specific components of the microbial community responded to distinct organic carbon exposure regimes. Dispersant alone was selected for a unique community and for dominant organisms that reflected treatment- and time-dependent responses. Dispersant amendment also led to diverging functional profiles among the different treatments. Similarly, oil alone was selected for a community that was distinct from treatments amended with dispersants. The presence of oil and dispersants with added nutrients led to substantial differences in microbial responses, likely suggesting increased fitness driven by the presence of additional inorganic nutrients. The oil-only additions led to a marked increase in the expression of phages, prophages, transposable elements, and plasmids (PPTEPs), suggesting that aspects of microbial community response to oil are driven by the "mobilome," potentially through viral-associated regulation of metabolic pathways in ciliates and flagellates that would otherwise throttle the microbial community through grazing.IMPORTANCEMicrocosm experiments simulated the April 2010 Deepwater Horizon oil spill by applying oil and synthetic dispersants (Corexit EC9500A and EC9527A) to deep ocean water samples. The exposure regime revealed severe negative alterations in the treatments' heterotrophic microbial activity and hydrocarbon oxidation rates. We expanded these findings by exploring metatranscriptomic signatures of the microbial communities during the chemical amendments in the microcosm experiments. Here we report how dominant organisms were uniquely associated with treatment- and time-dependent trajectories during the exposure regimes; nutrient availability was a significant factor in driving changes in metatranscriptomic responses. Remarkable signals associated with PPTEPs showed the potential role of mobilome and viral-associated survival responses. These insights underscore the time-dependent environmental perturbations of fragile marine environments under oil and anthropogenic stress.


Asunto(s)
Microbiota , Contaminación por Petróleo , Petróleo , Agua de Mar , Tensoactivos , Microbiota/efectos de los fármacos , Agua de Mar/microbiología , Agua de Mar/química , Tensoactivos/metabolismo , Tensoactivos/farmacología , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Transcriptoma , Hidrocarburos/metabolismo , Contaminantes Químicos del Agua/metabolismo
2.
ISME Commun ; 3(1): 99, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736763

RESUMEN

Environmental perturbations shape the structure and function of microbial communities. Oil spills are a major perturbation and resolving spills often requires active measures like dispersant application that can exacerbate the initial disturbance. Species-specific responses of microorganisms to oil and dispersant exposure during such perturbations remain largely unknown. We merged metatranscriptomic libraries with pangenomes to generate Core-Accessory Metatranscriptomes (CA-Metatranscriptomes) for two microbial hydrocarbon degraders that played important roles in the aftermath of the Deepwater Horizon oil spill. The Colwellia CA-Metatranscriptome illustrated pronounced dispersant-driven acceleration of core (~41%) and accessory gene (~59%) transcription, suggesting an opportunistic strategy. Marinobacter responded to oil exposure by expressing mainly accessory genes (~93%), suggesting an effective hydrocarbon-degrading lifestyle. The CA-Metatranscriptome approach offers a robust way to identify the underlying mechanisms of key microbial functions and highlights differences of specialist-vs-opportunistic responses to environmental disturbance.

3.
Environ Microbiol ; 20(12): 4543-4554, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209867

RESUMEN

One carbon (C1) metabolism plays an important role in marine carbon cycling but the dynamics and modes of C1 transformations are not fully understood. We made contemporaneous measurements of methylamine and methanol metabolism to elucidate the role of C1 compounds as sources of carbon, energy and nitrogen. Methanol and methylamine were predominantly used as an energy source in offshore waters (oxidation rate constant: kmethanol : 0.02-0.10 day-1 ; kmethylamine : 0.01-0.18 day-1 ), but were also important sources of biomass carbon in coastal waters (assimilation rate constant: kmethanol : 0.04-0.10 day-1 ; kmethylamine : 0.01-0.05 day-1 ). The relative extent of assimilation versus oxidation for these substrates correlated positively with chlorophyll, nutrients and heterotrophic bacterial production. Methanol oxidation and assimilation were stimulated significantly by nutrient addition. In contrast, methylamine metabolism was inhibited by ammonium or nitrate, suggesting that methylamine served as a nitrogen source. A preliminary metagenomic survey revealed a diverse population of putative C1-utilizing microorganisms. These results show that the remineralization of methylamine could provide both C and N sources for microbes. Both methanol and methylamine contribute to microbial energetic and carbon substrate demands with a distinctly different signature in nearshore versus offshore environments.


Asunto(s)
Carbono/metabolismo , Metanol/metabolismo , Metilaminas/metabolismo , Nitrógeno/metabolismo , Microbiología del Agua , Ciclo del Carbono , Golfo de México , Metagenómica , Ciclo del Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA