RESUMEN
The aggregation of ß-amyloid peptide (Aß) is associated with neurodegenerative diseases such as Alzheimer's disease (AD). Several therapies aimed at reducing the aggregation of this peptide have emerged as potential strategies for the treatment of AD. This paper describes the design and preparation of new hybrid molecules based on steroids, selenosugars, and [60]fullerene as potential inhibitors of Aß oligomerization. These moieties were selected based on their antioxidant properties and possible areas of interaction with the Aß. Cyclopropanations between C60 and malonates bearing different steroid and selenosugar moieties using the Bingel-Hirsch protocol have enabled the synthesis of functionalized molecular hybrids. The obtained derivatives were characterized by physical and spectroscopic techniques. Theoretical calculations for all the selenium compounds were performed using the density functional theory DFT/B3LYP-D3(BJ)/6-311G(2d,p) predicting the most stable conformations of the synthesized derivatives. Relevant geometrical parameters were investigated to relate the stereochemical behavior and the spectroscopic data obtained. The affinity of the compounds for Aß-peptide was estimated by molecular docking simulation, which predicted an increase in affinity and interactions for Aß for the hybrids containing the C60 core. In addition, parameters such as lipophilicity, polar surface area, and dipole moment were calculated to predict their potential interaction with membrane cells.