Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 24(6): 065202, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23339892

RESUMEN

The anti-reflective effect of dielectric coatings used in silicon solar cells has traditionally been the subject of intensive studies and practical applications. In recent years the interest has permanently grown in plasmonic layers based on metal nanoparticles, which are shown to increase light trapping in the underlying silicon. In the present work we have combined these two concepts by means of in situ synthesis of Au nanoparticles in a dielectric matrix (TiO2), which is commonly used as an anti-reflective coating in silicon solar cells, and added the third element: a 10-20% porosity in the matrix. The porosity is formed by means of a controllable wet etching by low concentration HF. As a consequence, the experimentally measured reflectance of silicon coated by such a plasmonic layer decreases to practically zero in a broad wavelength region around the localized surface plasmon resonance. Furthermore, we demonstrate that extinction and reflectance spectra of silicon coated by the plasmonic films can be successfully accounted for by means of Fresnel formulae, in which a double refractive index of the metal-dielectric material is used. This double refractive index cannot be explained by effective medium theory (Maxwell-Garnett, for example) and appears when the contribution of Au nanoparticles located at the TiO2/Si interface is high enough to result in formation of interface surface plasmon modes.

2.
Nanotechnology ; 19(35): 355308, 2008 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-21828848

RESUMEN

Polymer nanocomposites containing noble metal nanoparticles are promising materials for plasmonic applications. In this paper, we report on a high-resolution negative-tone nanocomposite resist based on poly(vinyl alcohol) where silver nanoparticles and nanopatterns are simultaneously generated by electron-beam lithography. Our results indicate nanostructures with a relatively high concentration of nanoparticles and, consequently, an electromagnetic coupling among the nanoparticles. Therefore, the patternable nanocomposite described in this work may be a suitable material for future plasmonic circuitry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...