Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Heliyon ; 10(12): e32800, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975234

RESUMEN

Cognitive impairment is an important component of non motor symptoms in Parkinson's disease (PD), and if not addressed in a timely manner, it can easily progress to dementia. However, no effective method currently exists to completely prevent or reverse cognitive impairment associated with PD. We therefore aimed to investigate the therapeutic effect of near-infrared region II light (NIR-II) region illumination on cognitive impairment in PD through behavioral experiments (water maze and rotary rod) and multiple fluorescence immunohistochemistry techniques. The 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced group was compared with the MPTP- untreated rat group, showing a significant reduction in escape latency and significant increase in the fall latency in the MPTP-treated group. The horizontal analysis results indicated that NIR-II phototherapy improved the learning and cognitive abilities as well as coordination and balance abilities of rats. Post-treatment, the MPTP rats showed significantly shortened, escape latency, prolonged target quadrant residence time, and prolonged fall latency compared with pre-treatment. The longitudinal analysis results reaffirmed that NIR-II phototherapy improved the learning and cognitive abilities as well as coordination and balance abilities of rats. The multiple fluorescence immunohistochemistry analysis trend plot showed that the activated microglia and astrocytes in the hippocampus were highest in MPTP-induced PD untreated group, moderate in MPTP-induced PD treatment group, and lowest in the control group. Our data indicates that NIR-II illumination improves learning and cognitive impairment as well as coordination and balance abilities in PD rats by downregulating the activation of microglia and astrocytes in the hippocampus.

4.
Int J Surg ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847776

RESUMEN

BACKGROUND: The accuracy of traditional clinical methods for assessing the metastatic status of axillary lymph nodes is unsatisfactory. In this study, we propose the use of radiomic technology and three-dimensional (3D) visualization technology to develop an unsupervised learning model for predicting axillary lymph node metastasis in patients with breast cancer, aiming to provide a new method for clinical axillary lymph node assessment in patients with this disease. METHODS: In this study, we retrospectively analyzed the data of 350 patients with invasive breast cancer who underwent lung-enhanced CT and axillary lymph node dissection (ALND) surgery at the Department of Breast Surgery of the XXX Hospital of XXX University. We used 3D visualization technology to create a 3D atlas of axillary lymph nodes and identified the region of interest (ROI) for the lymph nodes. Radiomic features were subsequently extracted and selected, and a prediction model for axillary lymph nodes was constructed using the K-means unsupervised algorithm. To validate the model, we prospectively collected data from 128 breast cancer patients who were clinically evaluated as negative at our center. RESULTS: Using 3D visualization technology, we extracted and selected a total of 36 CT radiomics features. The unsupervised learning model categorized 1737 unlabeled lymph nodes into two groups, and the analysis of the radiomic features between these groups indicated potential differences in lymph node status. Further validation with 1397 labeled lymph nodes demonstrated that the model had good predictive ability for axillary lymph node status, with an area under the curve (AUC) of 0.847 (0.825-0.869). Additionally, the model's excellent predictive performance was confirmed in the 128 axillary clinical assessment negative cohort (cN0) and the 350 clinical assessment positive (cN+) cohort, for which the correct classification rates (CCR) were 86.72% and 87.43%, respectively, which were significantly greater than those of clinical assessment methods. CONCLUSIONS: We created an unsupervised learning model that accurately predicts the status of axillary lymph nodes. This approach offers a novel solution for the precise assessment of axillary lymph nodes in patients with breast cancer.

5.
Cancer Cell ; 42(6): 968-984.e9, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38788719

RESUMEN

Glioblastomas (GBM) are incurable central nervous system (CNS) cancers characterized by substantial myeloid cell infiltration. Whether myeloid cell-directed therapeutic targets identified in peripheral non-CNS cancers are applicable to GBM requires further study. Here, we identify that the critical immunosuppressive target in peripheral cancers, triggering receptor expressed on myeloid cells-2 (TREM2), is immunoprotective in GBM. Genetic or pharmacological TREM2 deficiency promotes GBM progression in vivo. Single-cell and spatial sequencing reveals downregulated TREM2 in GBM-infiltrated myeloid cells. TREM2 negatively correlates with immunosuppressive myeloid and T cell exhaustion signatures in GBM. We further demonstrate that during GBM progression, CNS-enriched sphingolipids bind TREM2 on myeloid cells and elicit antitumor responses. Clinically, high TREM2 expression in myeloid cells correlates with better survival in GBM. Adeno-associated virus-mediated TREM2 overexpression impedes GBM progression and synergizes with anti-PD-1 therapy. Our results reveal distinct functions of TREM2 in CNS cancers and support organ-specific myeloid cell remodeling in cancer immunotherapy.


Asunto(s)
Glioblastoma , Glicoproteínas de Membrana , Receptores Inmunológicos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Humanos , Animales , Ratones , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Células Mieloides/metabolismo , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Línea Celular Tumoral , Ratones Endogámicos C57BL , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo
6.
Anal Chem ; 96(18): 6889-6897, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38651635

RESUMEN

Over the past few decades, asymmetric flow field-flow fractionation (AF4) has emerged as a robust technique for the separation of colloid-associated trace elements (TEs) in aqueous samples. Nevertheless, little is known about potential artifacts and how to control them when measuring the concentrations of colloid-associated elements at low (µg L-1) or ultralow concentrations (ng L-1) using AF4-UV-ICP-MS. Water from a boreal river was selected as a challenging test material due to its high concentrations of dissolved organic matter (DOM) and Fe-rich colloids. These colloids are expected to be significant contributors to artifact occurrence, even in a metal-free, ultraclean laboratory. The results show that the adsorption of Mn, Co, Ni, Cu, and Pb onto acid-cleaned, non-channel surfaces (such as connection tubing and autosampler) accounted for up to 48% of TE loss. These losses on non-channel surfaces also represent potential sources of cross-contamination for Co, Ni, Cu, and Pb. New, uncleaned poly(ether sulfone) membranes are also sources of contamination for Ni and Cu. Analytical bias may exist in the measured concentrations of TEs, primarily due to the potential carryover of weakly adsorbed TEs (e.g., Ni and Cu) on the system surfaces by colloids in the samples (e.g., DOM). On the other hand, colloids in the samples can also act to gradually remove contaminants from the surfaces. For these types of DOM-rich waters, preconditioning the AF4 system using 40 mg C L-1 of Suwannee River Natural Organic Matter (SRNOM, pH = 7) is recommended to mitigate the impact of membrane fouling and carryover. A comprehensive strategy for minimizing instrumental artifacts is presented and discussed.

7.
Front Immunol ; 15: 1374787, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601150

RESUMEN

Background: Acute pancreatitis (AP) is a severe digestive system disorder with a significant risk of progressing to sepsis, a major cause of mortality. Unraveling the immunological pathways in AP is essential for developing effective treatments, particularly understanding the role of specific immune cell traits in this progression. Methods: Employing a bidirectional two-sample Mendelian Randomization (MR) approach, this study first examined the causal relationship between AP and 731 immune cell traits to identify those significantly associated with AP. Subsequently, we explored the causal associations between 731 immune cell traits and sepsis. The analysis utilized extensive genome-wide association studies (GWAS) summary datasets, with a focus on identifying common immune cell traits with statistically significant causal associations between AP and sepsis. Results: Our investigation identified 44 immune cell traits unidirectionally associated with AP and 36 traits unidirectionally associated with sepsis. Among these, CD127 on CD28+ CD45RA- CD8+ T cells emerged as a common mediator, accounting for 5.296% of the increased risk of sepsis in AP patients. This finding highlights the significant role of specific memory CD8+ T cells in the pathophysiology of AP and its progression to sepsis. Conclusion: This study elucidates the critical role of specific immune cell traits, particularly CD127hi memory CD8+ T cells, in the progression of AP to sepsis. Our findings provide a foundation for future research into targeted immune-modulatory therapies, potentially improving patient outcomes in AP-related sepsis and offering new insights into the complex immunological dynamics of this condition.


Asunto(s)
Pancreatitis , Sepsis , Humanos , Pancreatitis/genética , Linfocitos T CD8-positivos , Enfermedad Aguda , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Sepsis/genética
8.
Medicine (Baltimore) ; 103(14): e37633, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579084

RESUMEN

BACKGROUND: The quality control circle (QCC) model has achieved good results in clinical applications in many hospitals in China and has gained popularity. This study aims to explore the application of QCC activities on early ambulation after cesarean section. METHODS: A QCC management group was established following standardized methods and techniques. The theme of the group was identified as "to enhance the implementation rate of the patient early ambulation after the cesarean section" through a matrix graph. The early ambulation rates after surgery of patients who received cesarean section were compared before and after QCC managements. RESULTS: Our data suggested that the early ambulation rates after cesarean section increased from 37.5% to 81.25% after applying QCC management. The biggest factor influencing the ambulation activities 24 ±â€…4 hours after the surgery was patients and family members do not cooperate. In addition, outstanding improvements in terms of nurses' sense of responsibility and self-confidence, communication and teamwork capacity in the problem-solving process were observed after the establishment of QCC. CONCLUSION: The application of QCC management had not only increase the early ambulation rates after cesarean section but also improved the quality of nursery care in general.


Asunto(s)
Cesárea , Ambulación Precoz , Humanos , Embarazo , Femenino , Hospitales , Control de Calidad , China
9.
Magn Reson Imaging ; 110: 149-160, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38621553

RESUMEN

Phototherapy, also known as photobiological therapy, is a non-invasive and highly effective physical treatment method. Its broad use in clinics has led to significant therapeutic results. Phototherapy parameters, such as intensity, wavelength, and duration, can be adjusted to create specific therapeutic effects for various medical conditions. Meanwhile, Magnetic Resonance Imaging (MRI), with its diverse imaging sequences and excellent soft-tissue contrast, provides a valuable tool to understand the therapeutic effects and mechanisms of phototherapy. This review explores the clinical applications of commonly used phototherapy techniques, gives a brief overview of how phototherapy impacts different diseases, and examines MRI's role in various phototherapeutic scenarios. We argue that MRI is crucial for precise targeting, treatment monitoring, and prognosis assessment in phototherapy. Future research and applications will focus on personalized diagnosis and monitoring of phototherapy, expanding its applications in treatment and exploring multimodal imaging technology to enhance diagnostic and therapeutic precision and effectiveness.


Asunto(s)
Imagen por Resonancia Magnética , Fototerapia , Humanos , Imagen por Resonancia Magnética/métodos , Fototerapia/métodos , Resultado del Tratamiento
10.
Anal Chem ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334364

RESUMEN

The presence of neutralizing antibodies against SARS-CoV-2 in blood, acquired through previous infection or vaccination, is known to prevent the (re)occurrence of outbreaks unless the virus mutates. Therefore, the measurement of neutralizing antibodies constitutes an indispensable tool in assessing an individual's and a population's immunity against SARS-CoV-2. For this reason, we have developed an innovative lateral flow assay (LFA) capable of detecting blood-derived neutralizing antibodies using a biomimetic SARS-CoV-2 mock virus system. Here, functionalized gold nanoparticles (AuNPs) featuring the trimeric spike (S) protein at its surface imitate the virus's structure and are applied to monitor the presence and efficacy of neutralizing antibodies in blood samples. The detection principle relies on the interaction between mock virus and the immobilized angiotensin-converting enzyme 2 (ACE2) receptor, which is inhibited when neutralizing antibodies are present. To further enhance the sensitivity of our competitive assay and identify low titers of neutralizing antibodies, an additional mixing pad is embedded into the device to increase the interaction time between mock virus and neutralizing antibodies. The developed LFA is benchmarked against the WHO International Standard (21/338) and demonstrated reliable quantification of neutralizing antibodies that inhibit ACE2 binding events down to a detection limit of an antibody titer of 59 IU/mL. Additional validation using whole blood and plasma samples showed reproducible results and good comparability to a laboratory-based reference test, thus highlighting its applicability for point-of-care testing.

11.
Chemistry ; 30(18): e202303919, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38263478

RESUMEN

Encouraged by the successful fabrication of C60-GNR (GNR=graphene nanoribbon) single-molecule transistors in experiments, four Fe-containing derived double-layered devices of Fe@C60-GNR are designed by employing different electrode linkages and their transport properties are investigated by using density functional theory (DFT) and nonequilibrium Green's function (NEGF) methods. Regardless of electrode connection, all these devices give rise to a smaller negative differential resistance (NDR) peak at V=0.2 and a higher peak at 1.2 V, suggesting their stable maneuverability as molecular devices and good candidates for developing on(off)-off(on)-on(off) current switches. The macroscopic NDR performance depends on the delocalization character and the crossing mechanism of the frontier orbitals. The peak-to-valley current ratios (Rmax) range from 454 to 2737, determined by the electrode linkage. Such a large Rmax-value is necessary for developing dynamic random-access memory (DRAM) cells. Encapsulating the Fe atom inside C60 not only improves the conductivity but also introduces the spin-polarized transport property. The spin-filtering efficiency (SFE) of almost all devices oscillates up and down in response to the bias voltage, indicating the possibility of designing on(off)-off(on)-on(off) spin switches and up-down spin switches. All these fascinating properties provide an important clue for designing similar molecular devices with multiple functions by trapping magnetic transition metal atoms inside fullerenes.

12.
Int Immunopharmacol ; 128: 111575, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280334

RESUMEN

Sepsis-associated liver dysfunction (SALD) aggravates the disease progression and prognosis of patients. Macrophages in the liver play a crucial role in the occurrence and development of SALD. Human umbilical cord mesenchymal stem cells (MSCs), by secreting extracellular vesicles (EVs), show beneficial effects in various inflammatory diseases. However, whether MSC-derived EVs (MSC-EVs) could ameliorate the inflammatory response in liver macrophages and the underlying mechanisms remain unclear. In this study, a mouse model of sepsis induced by lipopolysaccharide (LPS) challenge was used to investigate the immunomodulatory functions of MSC-EVs in SALD. LPS-stimulated primary Kupffer cells (KCs) and Raw264.7 were used to further explore the potential mechanisms of MSC-EVs in regulating the inflammatory response of macrophages. The results showed that MSC-EVs alleviated liver tissue injury and facilitated the polarization of M1 to M2 macrophages. Further in vitro studies confirmed that MSC-EVs treatment significantly downregulated the expression of several enzymes related to glycolysis and reduced the glycolytic flux by inhibiting hypoxia-inducible factor 1α (HIF-1α) expression, thus effectively inhibiting the inflammatory responses of macrophages. These findings reveal that the application of MSC-EVs might be a potential therapeutic strategy for treating SALD.


Asunto(s)
Vesículas Extracelulares , Hepatopatías , Células Madre Mesenquimatosas , Sepsis , Ratones , Animales , Humanos , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Hepatopatías/metabolismo , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo , Sepsis/metabolismo
13.
World Neurosurg ; 181: e856-e866, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37931880

RESUMEN

OBJECTIVE: We aimed to construct 3 predictive models, including a clinical model, a radiomics model, and a combined model, to forecast the discharge prognosis of patients with intracerebral hemorrhage on admission. METHODS: A retrospective study was conducted, involving a total of 161 patients with intracerebral hemorrhage (ICH). At a ratio of 7:3, 115 of these patients were assigned to the training cohort, and 46 of these patients were assigned to the validation cohort. To produce the radionics signature and pick the features to use in its construction, the least absolute shrinkage and selection operator (LASSO) regression was applied. Five machine models were applied, and the optimal model was chosen to construct the radionics model. A clinical model was constructed using univariate and stepwise analysis to identify independent risk variables for poor outcomes at discharge. A predictive combined model nomogram was generated by integrating the clinical model and radiomics model. The performance of the nomogram was assessed in the training cohort and validated in the validation cohort. Analyses of the receiver operating characteristic curve (ROC), the calibration curve, and the decision curve were performed to assess the performance of the combined model. RESULTS: This study encompassed a cohort of 161 individuals diagnosed with intracerebral hemorrhage (ICH), consisting of 110 males and 51 females. Utilizing the modified Rankin Scale (mRS) at discharge, the analysis revealed that 89 patients (55.3%) had a good prognosis, while 72 patients (44.7%) had a poor prognosis. Only 8 out of 1130 radiomics features were selected and used in conjunction with the LR algorithm to develop the radiomics model. Sex, IVH, GCS score, and ICH volume were determined to be independent predictors of poor outcomes at the time of discharge. The AUC values of the combined model, radiomics model, and clinical model were 0.8583, 0.8364, and 0.7579 in the training cohort, and 0.9153, 0.8692, and 0.7114 in the validation cohort, respectively. The combined model nomogram exhibited good calibration and clinical benefit in both the training and validation cohorts. The decision curve analysis (DCA) displays that the combined model obtained the highest net benefit compared to the radiomics model and clinics model in the training cohort. CONCLUSIONS: The combined model demonstrates reliability and efficacy in predicting the discharge prognosis of ICH, enabling physicians to perform individualized risk assessments, and make optimal choices about patients with ICH.


Asunto(s)
Hemorragia Cerebral , Radiómica , Femenino , Masculino , Humanos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Pronóstico , Hemorragia Cerebral/diagnóstico por imagen , Aprendizaje Automático , Tomografía Computarizada por Rayos X
14.
J Med Virol ; 95(12): e29342, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38130170

RESUMEN

Shanghai has faced an unprecedented COVID-19 pandemic with the BA.2.2 strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron infection. Comprehensive insights into its epidemiology, clinical manifestations, and viral shedding dynamics are currently limited. This study encompasses 208373 COVID-19 patients that were infected with the Omicron BA.2.2 sub-lineage in Shanghai, China. Demographic information, clinical symptoms, vaccination status, isolation status, as well as viral shedding time (VST) were recorded. Among the COVID-19 patients included in this study, 187124 were asymptomatic and 21249 exhibited mild symptoms. The median VST was 8.3 days. The common clinical symptoms included fever, persistent cough, phlegm, sore throat, and gastrointestinal symptoms. Factors such as advanced age, presence of comorbidities, mild symptomatology, and delayed isolation correlated with extended VST. Conversely, female gender and administration of two or three vaccine doses correlated with a reduction in VST. This investigation offers an in-depth characterization and analytical perspective on Shanghai's recent COVID-19 surge. Prolonged viral shedding of SARS-CoV-2 was observed in elderly, male, symptomatic patients, and those with comorbidity. Female, individuals with two or three vaccine doses, as well as those isolated early, shows an effective reduced VST.


Asunto(s)
COVID-19 , Vacunas , Anciano , Humanos , Femenino , Masculino , Estudios Retrospectivos , SARS-CoV-2 , COVID-19/epidemiología , China/epidemiología , Pandemias , Esparcimiento de Virus
15.
Nanomaterials (Basel) ; 13(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37570586

RESUMEN

A series of four-terminal V7(Bz)8-WGNR devices were established with wrinkled graphene nanoribbon (WGNR) and vanadium-benzene nanowire (V7(Bz)8). The spin-polarized V7(Bz)8 as the gate channel was placed crossing the plane, the concave (endo-positioned) and the convex (endo-positioned) surface of WGNR with different curvatures via Van der Waals interaction. The density functional theory (DFT) and nonequilibrium Green's function (NEGF) methods were adopted to calculate the transport properties of these devices at various bias voltages (VS) and gate voltages (VG), such as the conductance, spin-polarized currents, transmission spectra (TS), local density of states (LDOS), and scattering states. The results indicate that the position of V7(Bz)8 and the bending curvature of WGNR play important roles in tuning the transport properties of these four-terminal devices. A spin-polarized transport property is induced for these four-terminal devices by the spin-polarized nature of V7(Bz)8. Particularly, the down-spin channel disturbs strongly on the source-to-drain conductance of WGNR when V7(Bz)8 is endo-positioned crossing the WGNR. Our findings on the novel property of four-terminal V7(Bz)8-WGNR devices provide useful guidelines for achieving flexible graphene-based electronic nanodevices by attaching other similar multidecker metal-arene nanowires.

17.
Mol Neurobiol ; 60(10): 6121-6132, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37421564

RESUMEN

Neuropathic pain affects globally about 7-10% of the general population. Electroacupuncture (EA) effectively relieves neuropathic pain symptoms without causing any side effects; however, the underlying molecular mechanisms remain unclear. We established a chronic constriction injury (CCI)-induced rat model of neuropathic pain. RNA sequencing was used to screen for differentially expressed genes in the dorsal root ganglion after CCI and EA treatment. We identified gene markers of ferroptosis spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15) to be dysregulated in the CCI-induced neuropathic pain model. Furthermore, EA relieved CCI-induced pain as well as ferroptosis-related symptoms in the dorsal root ganglion, including lipid peroxidation and iron overload. Finally, SAT1 knockdown also alleviated mechanical and thermal pain hypersensitivity and reversed ferroptosis damage. In conclusion, we showed that EA inhibited ferroptosis by regulating the SAT1/ALOX15 pathway to treat neuropathic pain. Our findings provide insight into the mechanisms of EA and suggest a novel therapeutic target for neuropathic pain.


Asunto(s)
Electroacupuntura , Ferroptosis , Neuralgia , Ratas , Humanos , Animales , Ratas Sprague-Dawley , Ganglios Espinales/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo
18.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37373163

RESUMEN

High-fat diet (HFD)-induced insulin resistance (IR) in skeletal muscle is often accompanied by mitochondrial dysfunction and oxidative stress. Boosting nicotinamide adenine dinucleotide (NAD) using nicotinamide riboside (NR) can effectively decrease oxidative stress and increase mitochondrial function. However, whether NR can ameliorate IR in skeletal muscle is still inconclusive. We fed male C57BL/6J mice with an HFD (60% fat) ± 400 mg/kg·bw NR for 24 weeks. C2C12 myotube cells were treated with 0.25 mM palmitic acid (PA) ± 0.5 mM NR for 24 h. Indicators for IR and mitochondrial dysfunction were analyzed. NR treatment alleviated IR in HFD-fed mice with regard to improved glucose tolerance and a remarkable decrease in the levels of fasting blood glucose, fasting insulin and HOMA-IR index. NR-treated HFD-fed mice also showed improved metabolic status regarding a significant reduction in body weight and lipid contents in serum and the liver. NR activated AMPK in the skeletal muscle of HFD-fed mice and PA-treated C2C12 myotube cells and upregulated the expression of mitochondria-related transcriptional factors and coactivators, thereby improving mitochondrial function and alleviating oxidative stress. Upon inhibiting AMPK using Compound C, NR lost its ability in enhancing mitochondrial function and protection against IR induced by PA. In summary, improving mitochondrial function through the activation of AMPK pathway in skeletal muscle may play an important role in the amelioration of IR using NR.


Asunto(s)
Resistencia a la Insulina , Masculino , Ratones , Animales , Resistencia a la Insulina/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Endogámicos C57BL , Mitocondrias , Músculo Esquelético/metabolismo , Insulina/metabolismo , Ácido Palmítico/farmacología , Ácido Palmítico/metabolismo , Dieta Alta en Grasa/efectos adversos
19.
IEEE Trans Image Process ; 32: 2972-2984, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200127

RESUMEN

Known as a hard nut, the single-model transferable targeted attacks via decision-level optimization objectives have attracted much attention among scholars for a long time. On this topic, recent works devoted themselves to designing new optimization objectives. In contrast, we take a closer look at the intrinsic problems in three commonly adopted optimization objectives, and propose two simple yet effective methods in this paper to mitigate these intrinsic problems. Specifically, inspired by the basic idea of adversarial learning, we, for the first time, propose a unified Adversarial Optimization Scheme (AOS) to release both the problems of gradient vanishing in cross-entropy loss and gradient amplification in Po+Trip loss, and indicate that our AOS, a simple transformation on the output logits before passing them to the objective functions, can yield considerable improvements on the targeted transferability. Besides, we make a further clarification on the preliminary conjecture in Vanilla Logit Loss (VLL) and point out the problem of unbalanced optimization in VLL, in which the source logit may risk getting increased without the explicit suppression on it, leading to the low transferability. Then, the Balanced Logit Loss (BLL) is further proposed, where we take both the source logit and the target logit into account. Comprehensive validations witness the compatibility and the effectiveness of the proposed methods across most attack frameworks, and their effectiveness can also span two tough cases (i.e., the low-ranked transfer scenario and the transfer to defense methods) and three datasets (i.e., the ImageNet, CIFAR-10, and CIFAR-100). Our source code is available at https://github.com/xuxiangsun/DLLTTAA.

20.
Heliyon ; 9(3): e13753, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36873506

RESUMEN

Background: Evidence indicates that chronic stress promotes progression of colorectal liver metastases (CLM). Mangiferin is the active chemical constituent of the rhizomes of Anemarrhena asphodeloides Bunge. Mangiferin (MGF) exerts anti-inflammatory, anti-proliferative, anti-angiogenic, anti-fibrotic and antioxidant effects in a variety of cancers. Its mechanism in chronic stress and tumor growth is still poorly understood. Methods: To investigate the effects of MGF on the CLM and tumor-associated depression, activated hepatic stellate cells (a-HSCs), HT-29 CRC cells, were used in chronic unpredictable mild stress (CUMS) of tumor-bearing models. Potential antidepressant activity was determined by FST, TST, SIT and serum cytokine (IL-6, IL-18 and TNF-α) examination. Downstream signaling molecules were detected by Western blot, immunohistochemistry and fluorescence microscopy. Results: CUMS induced depression behavior and depression-related cytokines and promoted tumor growth in CLM. MGF-treated mice significantly improved chronic stress behaviors by reducing depression-related cytokines. In addition, MGF treatment inhibits WAVE2 signaling pathway, leading to TGF-ß1 induced HSC inhibition, thereby reducing depressive behavior and tumor growth in CLM. Conclusion: MGF can alleviate CUMS induced tumor growth and the treatment of CLM patients with MGF may be beneficial.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...