Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Reprod Biol Endocrinol ; 16(1): 35, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636114

RESUMEN

BACKGROUND: Allopregnanolone is a neurosteroid synthesized in the central nervous system independently of steroidogenic glands; it influences sexual behavior and anxiety. The aim of this work is to evaluate the indirect effect of a single pharmacological dose of allopregnanolone on important processes related to normal ovarian function, such as folliculogenesis, angiogenesis and luteolysis, and to study the corresponding changes in endocrine profile and enzymatic activity over 4 days of the rat estrous cycle. We test the hypothesis that allopregnanolone may trigger hypothalamus - hypophysis - ovarian axis dysregulation and cause ovarian failure which affects the next estrous cycle stages. METHODS: Allopregnanolone was injected during the proestrous morning and then, the animals were sacrificed at each stage of the estrous cycle. Ovarian sections were processed to determine the number and diameter of different ovarian structures. Cleaved caspase 3, proliferating cell nuclear antigen, α-actin and Von Willebrand factor expressions were evaluated by immunohistochemistry. Luteinizing hormone, prolactin, estrogen and progesterone serum levels were measured by radioimmunoassay. The enzymatic activities of 3ß-hydroxysteroid dehydrogenase, 3α-hydroxysteroid oxidoreductase and 20α-hydroxysteroid dehydrogenase were determined by spectrophotometric assays. Two-way ANOVA followed by Bonferroni was performed to determine statistical differences between control and treated groups along the four stages of the cycle. RESULTS: The results indicate that allopregnanolone allopregnanolone decreased the number of developing follicles, while atretic follicles and cysts increased with no effects on normal cyclicity. Some cysts in treated ovaries showed morphological characteristics similar to luteinized unruptured follicles. The apoptosis/proliferation balance increased in follicles from treated rats. The endocrine profile was altered at different stages of the estrous cycle of treated rats. The angiogenic markers expression increased in treated ovaries. As regards corpora lutea, the apoptosis/proliferation balance and 20α-hydroxysteroid dehydrogenase enzymatic activity decreased significantly. Progesterone levels and 3ß-hydroxysteroid dehydrogenase enzymatic activity increased in treated rats. These data suggest that allopregnanolone interferes with steroidogenesis and folliculogenesis at different stages of the cycle. CONCLUSION: Allopregnanolone interferes with corpora lutea regression, which might indicate that this neurosteroid exerts a protective role over the luteal cells and prevents them from luteolysis. Allopregnanolone plays an important role in the ovarian pathophysiology.


Asunto(s)
Cuerpo Lúteo/efectos de los fármacos , Ciclo Estral/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Pregnanolona/farmacología , Análisis de Varianza , Animales , Caspasa 3/análisis , Caspasa 3/metabolismo , Sistema Endocrino/efectos de los fármacos , Estrógenos/sangre , Femenino , Hidroxiesteroide Deshidrogenasas/metabolismo , Inmunohistoquímica , Hormona Luteinizante/sangre , Ovario/efectos de los fármacos , Ovario/patología , Oxidorreductasas/metabolismo , Progesterona/sangre , Prolactina/sangre , Antígeno Nuclear de Célula en Proliferación/análisis , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ratas
3.
PLoS One ; 8(2): e57572, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23460876

RESUMEN

The presence of autoantibodies in cancer has become relevant in recent years. We demonstrated that autoantibodies purified from the sera of breast cancer patients activate muscarinic acetylcholine receptors in tumor cells. Immunoglobulin G (IgG) from breast cancer patients in T1N0Mx stage (tumor size≤2 cm, without lymph node metastasis) mimics the action of the muscarinic agonist carbachol stimulating MCF-7 cell proliferation, migration and invasion. Angiogenesis is a central step in tumor progression because it promotes tumor invasion and metastatic spread. Vascular endothelial growth factor-A (VEGF-A) is the main angiogenic mediator, and its levels have been correlated with poor prognosis in cancer. The aim of the present work was to investigate the effect of T1N0Mx-IgG on the expression of VEGF-A, and the in vivo neovascular response triggered by MCF-7 cells, via muscarinic receptor activation. We demonstrated that T1N0Mx-IgG (10(-8) M) and carbachol (10(-9) M) increased the constitutive expression of VEGF-A in tumor cells, effect that was reverted by the muscarinic antagonist atropine. We also observed that T1N0Mx-IgG and carbachol enhanced the neovascular response produced by MCF-7 cells in the skin of NUDE mice. The action of IgG or carbachol was reduced in the presence of atropine. In conclusion, T1N0Mx-IgG and carbachol may promote VEGF-A production and neovascularization induced by breast tumor cells via muscarinic receptors activation. These effects may be accelerating breast tumor progression.


Asunto(s)
Anticuerpos Antineoplásicos/inmunología , Autoanticuerpos/inmunología , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/inmunología , Neovascularización Patológica/inmunología , Receptores Muscarínicos/inmunología , Animales , Neoplasias de la Mama/patología , Carbacol/farmacología , Femenino , Fibroadenoma/irrigación sanguínea , Fibroadenoma/inmunología , Fibroadenoma/patología , Humanos , Inmunoglobulina G , Células MCF-7 , Ratones , Ratones Desnudos , Estadificación de Neoplasias , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA