Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EMBO J ; 20(21): 5991-8, 2001 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-11689439

RESUMEN

Membrane traffic requires vesicles to fuse with a specific target, and SNARE proteins and Rab/Ypt GTPases contribute to this specificity. In the yeast Saccharomyces cerevisae, the Rab/Ypt GTPase Ypt6p is required for fusion of endosome-derived vesicles with the late Golgi. We have shown previously that activation of Ypt6p depends on its exchange factor, Ric1p-Rgp1p, a peripheral membrane protein complex restricted to the Golgi. We show here that a conserved trimeric protein complex, VFT (Vps52/53/54), binds directly to Ypt6p:GTP. Localization of VFT to the Golgi requires Ypt6p, but is unaffected in gos1 and tlg1 mutants, in which late Golgi integral membrane proteins, including SNAREs, are mislocalized. The VFT complex also binds directly to the N-terminal domain of the SNARE Tlg1p, both in vitro and in vivo, in a Ypt6p-independent manner. We suggest that the VFT complex links vesicles containing Tlg1p to their target, which is defined by the local activation of Ypt6p.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Fusión de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Transporte Vesicular , Endosomas/metabolismo , Proteínas Fúngicas/metabolismo , Sustancias Macromoleculares , Proteínas de Unión al GTP Monoméricas/genética , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
EMBO J ; 20(18): 5176-86, 2001 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-11566881

RESUMEN

Yeast endosomes, like those in animal cells, invaginate their membranes to form internal vesicles. The resulting multivesicular bodies fuse with the vacuole, the lysosome equivalent, delivering the internal vesicles for degradation. We have partially purified internal vesicles and analysed their content. Besides the known component carboxypeptidase S (Cps1p), we identified a polyphosphatase (Phm5p), a presumptive haem oxygenase (Ylr205p/Hmx1p) and a protein of unknown function (Yjl151p/Sna3p). All are membrane proteins, and appear to be cargo molecules rather than part of the vesicle-forming machinery. We show that both Phm5p and Cps1p are ubiquitylated, and that in a doa4 mutant, which has reduced levels of free ubiquitin, Cps1p, Phm5p and Hmx1p are mis-sorted to the vacuolar membrane. Mutation of Lys 6 in the cytoplasmic tail of Phm5p disrupts its sorting, but sorting is restored, even in doa4 cells, by the biosynthetic addition of a single ubiquitin chain. In contrast, Sna3p enters internal vesicles in a ubiquitin-independent manner. Thus, ubiquitin acts as a signal for the partitioning of some, but not all, membrane proteins into invaginating endosomal vesicles.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Vesículas Transportadoras/fisiología , Ubiquitinas/fisiología , Levaduras/metabolismo , Ácido Anhídrido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Carboxipeptidasas/metabolismo , Endosomas/fisiología , Hemo Oxigenasa (Desciclizante)/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Vesículas Transportadoras/ultraestructura , Vacuolas/metabolismo , Vacuolas/ultraestructura
3.
Curr Biol ; 11(12): R460-2, 2001 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-11448785

RESUMEN

The AP-1 adaptor complex has been cast as the major player in clathrin coat formation for vesicular transport from the trans-Golgi to the endocytic pathway. But new results on 'GGA' proteins have raised doubts about this paradigm and suggest both a new sorting mechanism and an unexpected complexity in the roles of clathrin.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Proteínas Portadoras/metabolismo , Clatrina/metabolismo , Transporte de Proteínas/fisiología , Factor 1 de Ribosilacion-ADP/metabolismo , Animales , Vesículas Cubiertas por Clatrina/metabolismo , Aparato de Golgi/metabolismo , Humanos , Conformación Proteica , Factor de Transcripción AP-1/metabolismo
4.
Trends Cell Biol ; 11(3): 99-101, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11306253

RESUMEN

A major problem of intracellular membrane traffic concerns the way in which transport vesicles find and fuse with their target organelles. SNARE proteins are involved in fusion, and their mutual recognition could in principle provide the necessary specificity. Alternatively, the preliminary tethering of vesicles, mediated by peripheral membrane proteins, could hold the key. Previous studies of SNARE complex assembly in solution have suggested little specificity, but recent experiments with yeast SNAREs anchored in liposomes show that their interactions can be highly selective. It is likely that both tethering and SNARE engagement contribute to the accuracy of membrane transport.


Asunto(s)
Membranas Intracelulares/fisiología , Fusión de Membrana/fisiología , Proteínas de la Membrana/fisiología , Vesículas Transportadoras/fisiología , Proteínas de Transporte Vesicular , Secuencia de Aminoácidos/fisiología , Liposomas , Orgánulos/fisiología , Orgánulos/ultraestructura , Unión Proteica/fisiología , Proteínas SNARE , Sensibilidad y Especificidad , Levaduras
5.
J Cell Biol ; 155(7): 1099-101, 2001 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-11756463

RESUMEN

The role of vesicles in cargo transport through the Golgi apparatus has been controversial. Large forms of cargo such as protein aggregates are thought to progress through the Golgi stack by a process of cisternal maturation, balanced by a return flow of Golgi resident proteins in COPI-coated vesicles. However, whether this is the primary role of vesicles, or whether they also serve to transport small cargo molecules in a forward direction has been debated. Two papers (Martínez-Menárguez et al., 2001; Mironov et al., 2001, this issue) use sophisticated light and electron microscopy to provide evidence that the vesicular stomatitis virus membrane glycoprotein (VSV G)* is largely excluded from vesicles in vivo, and does not move between cisternae, whereas resident Golgi enzymes freely enter vesicles as predicted by the cisternal maturation model. Both papers conclude that vesicles are likely to play only a minor role in the anterograde transport of cargo through the Golgi apparatus in mammalian tissue culture cells.


Asunto(s)
Aparato de Golgi/fisiología , Glicoproteínas de Membrana , Transporte de Proteínas , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Aparato de Golgi/ultraestructura , Humanos , Modelos Biológicos , Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/ultraestructura , Virus de la Estomatitis Vesicular Indiana/fisiología , Proteínas del Envoltorio Viral/metabolismo
6.
Mol Biol Cell ; 11(11): 3737-49, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11071903

RESUMEN

Membrane proteins transported to the yeast vacuole can have two fates. Some reach the outer vacuolar membrane, whereas others enter internal vesicles, which form in late endosomes, and are ultimately degraded. The vacuolar SNAREs Nyv1p and Vam3p avoid this fate by using the AP-3-dependent pathway, which bypasses late endosomes, but the endosomal SNARE Pep12p must avoid it more directly. Deletion analysis revealed no cytoplasmic sequences necessary to prevent the internalization of Pep12p in endosomes. However, introduction of acidic residues into the cytoplasmic half of the transmembrane domain created a dominant internalization signal. In other contexts, this same feature diverted proteins from the Golgi to endosomes and slowed their exit from the endoplasmic reticulum. The more modestly polar transmembrane domains of Sec12p and Ufe1p, which normally serve to hold these proteins in the endoplasmic reticulum, also cause Pep12p to be internalized, as does that of the vacuolar protein Cps1p. It seems that quality control mechanisms recognize polar transmembrane domains at multiple points in the secretory and endocytic pathways and in endosomes sort proteins for subsequent destruction in the vacuole. These mechanisms may minimize the damaging effects of abnormally exposed polar residues while being exploited for the localization of some normal proteins.


Asunto(s)
Proteínas de la Membrana/metabolismo , Señales de Clasificación de Proteína , Proteínas de Saccharomyces cerevisiae , Vacuolas/metabolismo , Levaduras/metabolismo , Secuencia de Aminoácidos , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Intercambio de Guanina Nucleótido , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutación , Transporte de Proteínas , Proteínas Qa-SNARE
7.
J Cell Biol ; 151(3): 587-600, 2000 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-11062260

RESUMEN

Pep12p is a yeast syntaxin located primarily in late endosomes. Using mutagenesis of a green fluorescent protein chimera we have identified a sorting signal FSDSPEF, which is required for transport of Pep12p from the exocytic pathway to late endosomes, from which it can, when overexpressed, reach the vacuole. When this signal is mutated, Pep12p instead passes to early endosomes, a step that is determined by its transmembrane domain. Surprisingly, Pep12p is then specifically retained in early endosomes and does not go on to late endosomes. By testing appropriate chimeras in mutant strains, we found that FSDSPEF-dependent sorting was abolished in strains lacking Gga1p and Gga2p, Golgi-associated coat proteins with homology to gamma adaptin. In the gga1 gga2 double mutant endogenous Pep12p cofractionated with the early endosome marker Tlg1p, and recycling of Snc1p through early endosomes was defective. Pep12p sorting was also defective in cells lacking the clathrin heavy or light chain. We suggest that specific and direct delivery of proteins to early and late endosomes is required to maintain the functional heterogeneity of the endocytic pathway and that the GGA proteins, probably in association with clathrin, help create vesicles destined for late endosomes.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Proteínas Portadoras/metabolismo , Endosomas/metabolismo , Proteínas Fúngicas/metabolismo , Aparato de Golgi/metabolismo , Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular , Factores de Ribosilacion-ADP/genética , Secuencia de Aminoácidos , Biomarcadores/análisis , Proteínas Portadoras/genética , Clatrina/química , Clatrina/genética , Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Endosomas/química , Proteínas Fúngicas/genética , Aparato de Golgi/química , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Señales de Clasificación de Proteína/genética , Señales de Clasificación de Proteína/fisiología , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Qa-SNARE , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE , Saccharomyces cerevisiae/genética , Alineación de Secuencia
10.
EMBO J ; 19(18): 4885-94, 2000 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-10990452

RESUMEN

Cells lacking the GTPase Ypt6p have defects in intracellular traffic and are temperature sensitive. Their growth is severely impaired by additional mutation of IMH1, which encodes a non-essential Golgi-associated coiled-coil protein. A screen for mutants that, like ypt6, specifically impair the growth of imh1 cells led to the identification of RIC1. Ric1p forms a tight complex with a previously uncharacterized protein, Rgp1p. The Ric1p-Rgp1p complex binds Ypt6p in a nucleotide-dependent manner, and purified Ric1p-Rgp1 stimulates guanine nucleotide exchange on Ypt6p in vitro. Deletion of RIC1 or RGP1, like that of YPT6, blocks the recycling of the exocytic SNARE Snc1p from early endosomes to the Golgi and causes temperature-sensitive growth, but this defect can be relieved by overexpression of YPT6. Ric1p largely colocalizes with the late Golgi marker Sec7p. Ypt6p shows a similar distribution, but this is altered when RIC1 or RGP1 is mutated. We infer that the Ric1p-Rgp1p complex serves to activate Ypt6p on Golgi membranes by nucleotide exchange, and that this is required for efficient fusion of endosome-derived vesicles with the Golgi.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular , Secuencia de Aminoácidos , Animales , Catálisis , Cromatografía de Afinidad , Electroforesis en Gel de Poliacrilamida , Eliminación de Gen , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Inmunoglobulina G/metabolismo , Espectrometría de Masas , Microscopía Confocal , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Nucleótidos/metabolismo , Plásmidos/metabolismo , Unión Proteica , Proteínas SNARE , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/química , Temperatura , Factores de Tiempo , Factores de Transcripción/genética , Vacuolas/genética
11.
J Biol Chem ; 275(25): 19352-60, 2000 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-10777497

RESUMEN

Regulation of intracellular ion concentration is an essential function of all cells. In this study, we report the identification of two previously uncharacterized genes, PSR1 and PSR2, that perform an essential function under conditions of sodium ion stress in the yeast Saccharomyces cerevisiae. Psr1p and Psr2p are highly homologous and were identified through their homology with the endoplasmic reticulum membrane protein Nem1p. Localization and biochemical fractionation studies show that Psr1p is associated with the plasma membrane via a short amino-terminal sequence also present in Psr2p. Growth of the psr1psr2 mutant is severely inhibited under conditions of sodium but not potassium ion or sorbitol stress. This growth defect is due to the inability of the psr1psr2 mutant to properly induce transcription of ENA1/PMR2, the major sodium extrusion pump of yeast cells. We provide genetic evidence that this regulation is independent of the phosphatase calcineurin, previously implicated in the sodium stress response in yeast. We show that Psr1p contains a DXDX(T/V) phosphatase motif essential for its function in vivo and that a Psr1p-PtA fusion purified from yeast extracts exhibits phosphatase activity. Based on these data, we suggest that Psr1p/Psr2p, members of an emerging class of eukaryotic phosphatases, are novel regulators of salt stress response in yeast.


Asunto(s)
Proteínas de la Membrana/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia de Bases , Calcineurina/metabolismo , Membrana Celular/enzimología , Cartilla de ADN , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Señales de Clasificación de Proteína/química , Señales de Clasificación de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido , Sodio/metabolismo
12.
Mol Biol Cell ; 11(1): 23-38, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10637288

RESUMEN

Many endocytosed proteins in yeast travel to the vacuole, but some are recycled to the plasma membrane. We have investigated the recycling of chimeras containing green fluorescent protein (GFP) and the exocytic SNARE Snc1p. GFP-Snc1p moves from the cell surface to internal structures when Golgi function or exocytosis is blocked, suggesting continuous recycling via the Golgi. Internalization is mediated by a conserved cytoplasmic signal, whereas diversion from the vacuolar pathway requires sequences within and adjacent to the transmembrane domain. Delivery from the Golgi to the surface is also influenced by the transmembrane domain, but the requirements are much less specific. Recycling requires the syntaxins Tlg1p and Tlg2p but not Pep12p or proteins such as Vps4p and Vps5p that have been implicated in late endosome-Golgi traffic. Subtle changes to the recycling signal cause GFP-Snc1p to accumulate preferentially in punctate internal structures, although it continues to recycle to the surface. The internal GFP-Snc1p colocalizes with Tlg1p, and immunofluorescence and immunoelectron microscopy reveal structures that contain Tlg1p, Tlg2p, and Kex2p but lack Pep12p and Sec7p. We propose that these represent early endosomes in which sorting of Snc1p and late Golgi proteins occurs, and that transport can occur directly from them to the Golgi apparatus.


Asunto(s)
Endosomas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Compartimento Celular , Membrana Celular/metabolismo , Exocitosis , Proteínas Fúngicas/genética , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Proteínas Qa-SNARE , Proteínas R-SNARE , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología
13.
Philos Trans R Soc Lond B Biol Sci ; 354(1388): 1471-8, 1999 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-10515003

RESUMEN

The secretory and endocytic pathways within higher cells consist of multiple membrane-bound compartments, each with a characteristic composition, through which proteins move on their way to or from the cell surface. Sorting of proteins within this system is achieved by their selective incorporation into budding vesicles and the specific fusion of these with an appropriate target membrane. Cytosolic coat proteins help to select vesicle contents, while fusion is mediated by membrane proteins termed SNAREs present in both vesicles and target membranes. SNAREs are not the sole determinants of target specificity, but they lie at the heart of the fusion process. The complete set of SNAREs is known in yeast, and analysis of their locations, interactions and functions in vivo gives a comprehensive picture of the traffic routes and the ways in which organelles such as the Golgi apparatus are formed. The principles of protein and lipid sorting revealed by this analysis are likely to apply to a wide variety of eukaryotic cells.


Asunto(s)
Adenosina Trifosfatasas , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Transporte Biológico , Biomarcadores , Endocitosis , Proteínas Fúngicas/metabolismo , Fusión de Membrana , Proteínas del Tejido Nervioso/metabolismo , Proteínas Qa-SNARE , Proteínas SNARE , Proteína 25 Asociada a Sinaptosomas
14.
EMBO J ; 18(14): 3934-46, 1999 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-10406798

RESUMEN

Traffic through the yeast Golgi complex depends on a member of the syntaxin family of SNARE proteins, Sed5p, present in early Golgi cisternae. Sft2p is a non-essential tetra-spanning membrane protein, found mostly in the late Golgi, that can suppress some sed5 alleles. We screened for mutations that show synthetic lethality with sft2 and found one that affects a previously uncharacterized membrane protein, Got1p, as well as new alleles of sed5 and vps3. Got1p is an evolutionarily conserved non-essential protein with a membrane topology similar to that of Sft2p. Immunofluorescence and subcellular fractionation indicate that it is present in early Golgi cisternae. got1 mutants, but not sft2 mutants, show a defect in an in vitro assay for ER-Golgi transport at a step after vesicle tethering to Golgi membranes. In vivo, inactivation of both Got1p and Sft2p results in phenotypes ascribable to a defect in endosome-Golgi traffic, while their complete removal results in an ER-Golgi transport defect. Thus the presence of either Got1p or Sft2p is required for vesicle fusion with the Golgi complex in vivo. We suggest that Got1p normally facilitates Sed5p-dependent fusion events, while Sft2p performs a related function in the late Golgi.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Transporte Biológico , Células COS , Clonación Molecular , Secuencia Conservada/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Endosomas/metabolismo , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Genes Fúngicos/fisiología , Genes Letales/genética , Prueba de Complementación Genética , Aparato de Golgi/ultraestructura , Fusión de Membrana , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutación , Fenotipo , Proteínas Qa-SNARE , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Transporte Vesicular
15.
Exp Cell Res ; 247(1): 1-8, 1999 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-10047442

RESUMEN

SNARE proteins lie at the heart of the membrane fusion events in the secretory and endocytic pathways. Physical interactions between them are thought not only to provide the driving force for bringing membranes together, but also to contribute to the specificity of vesicle targeting. Completion of the yeast genome sequence has allowed the full set of SNAREs to be identified. Characterization of these helps to define the number of distinct compartments and the nature of the transport steps between them, but also shows that SNAREs are by no means the sole determinants of fusion specificity. Evolutionary conservation of SNAREs suggests that despite the differences in scale and morphology, many features of membrane organization are similar in yeast and animal cells. This review summarizes current knowledge of the yeast SNAREs and the picture of the secretory pathway that emerges from such studies.


Asunto(s)
Proteínas de la Membrana/fisiología , Saccharomyces cerevisiae/fisiología , Proteínas de Transporte Vesicular , Animales , Transporte Biológico/fisiología , Humanos , Modelos Biológicos , Proteínas SNARE
16.
Mol Biol Cell ; 9(12): 3383-97, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9843576

RESUMEN

Tlg1p and Tlg2p, members of the syntaxin family of SNAREs in yeast, have been implicated in both endocytosis and the retention of late Golgi markers. We have investigated the functions of these and the other endocytic syntaxins Pep12p and Vam3p. Remarkably, growth is possible in the absence of all four proteins. In the absence of the others, Pep12p and Tlg1p can each create endosomes accessible to the endocytic tracer dye FM4-64. However, although Pep12p is required for the ligand-induced internalization of the alpha factor receptor and its passage via Pep12p-containing membranes to the vacuole, Tlg1p is not. In contrast, Tlg1p is required for the efficient localization of the catalytic subunit of chitin synthase III (Chs3p) to the bud neck, a process that involves endocytosis and polarized delivery of Chs3p. In wild-type cells, internalized Chs3p cofractionates with Tlg1p and Tlg2p, and in a strain lacking the other endocytic syntaxins, either Tlg1p or Tlg2p is sufficient for correct localization of the enzyme. Pep12p is neither necessary nor sufficient for this process. We conclude that there are two endocytic routes in yeast that can operate independently and that Tlg1p is located at the junction of one of these with the polarized exocytic pathway.


Asunto(s)
Quitina Sintasa/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular , Transporte Biológico Activo , Polaridad Celular , Endocitosis , Endosomas/metabolismo , Exocitosis , Aparato de Golgi/metabolismo , Fusión de Membrana , Microscopía Electrónica , Proteínas Qa-SNARE , Proteínas SNARE , Saccharomyces cerevisiae/citología
17.
Mol Biol Cell ; 9(9): 2667-80, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9725919

RESUMEN

We describe for the first time the visualization of Golgi membranes in living yeast cells, using green fluorescent protein (GFP) chimeras. Late and early Golgi markers are present in distinct sets of scattered, moving cisternae. The immediate effects of temperature-sensitive mutations on the distribution of these markers give clues to the transport processes occurring. We show that the late Golgi marker GFP-Sft2p and the glycosyltransferases, Anp1p and Mnn1p, disperse into vesicle-like structures within minutes of a temperature shift in sec18, sft1, and sed5 cells, but not in sec14 cells. This is consistent with retrograde vesicular traffic, mediated by the vesicle SNARE Sft1p, to early cisternae containing the target SNARE Sed5p. Strikingly, Sed5p itself moves rapidly to the endoplasmic reticulum (ER) in sec12 cells, implying that it cycles through the ER. Electron microscopy shows that Golgi membranes vesiculate in sec18 cells within 10 min of a temperature shift. These results emphasize the dynamic nature of Golgi cisternae and satisfy the kinetic requirements of a cisternal maturation model in which all resident proteins must undergo retrograde vesicular transport, either within the Golgi complex or from there to the ER, as anterograde cargo advances.


Asunto(s)
Proteínas Fúngicas/metabolismo , Aparato de Golgi/metabolismo , Manosiltransferasas , Proteínas de Saccharomyces cerevisiae , Transporte Biológico , Glicosiltransferasas/metabolismo , Proteínas Fluorescentes Verdes , Membranas Intracelulares/fisiología , Proteínas Luminiscentes , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Qa-SNARE , Proteínas Qc-SNARE , Levaduras
18.
Biochim Biophys Acta ; 1404(1-2): 9-31, 1998 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-9714710

RESUMEN

Soluble factors, NSF and SNAPs, are required at many membrane fusion events within the cell. They interact with a class of type II integral membrane proteins termed SNAP receptors, or SNAREs. Interaction between cognate SNAREs on opposing membranes is a prerequisite for NSF dependent membrane fusion. NSF is an ATPase which will disrupt complexes composed of different SNAREs. However, there is increasingly abundant evidence that the SNARE complex recognised by NSF does not bridge the two fusing membranes, but rather is composed of SNAREs in the same membrane. The essential role of NSF may be to prime SNAREs for a direct role during fusion. The best characterised SNAREs in the Golgi are Sed5p in yeast and its mammalian homologue syntaxin 5, both of which are predominantly localised to the cis Golgi. The SNARE-SNARE interactions in which these two proteins are involved are strikingly similar. Sed5p and syntaxin 5 may mediate three distinct pathways for membrane flow into the cis Golgi, one from the ER, one from later Golgi cisternae, and possibly a third from endosomes. Syntaxin 5 is itself likely to cycle through the ER, and thus may be involved in homotypic fusion of ER derived transport vesicles. In all well characterised SNARE dependent membrane fusion events one of the interacting SNAREs is a syntaxin homologue. There are only eight members of the syntaxin family in yeast. Besides Sed5p two others, Tlg1p and Tlg2p, are found in the Golgi complex. They are present in a late Golgi compartment, but neither is required for transit of secreted proteins through the Golgi. We suggest that these observations are most compatible with a model for transit through the Golgi in which anterograde cargo is carried in cisternae, the enzymatic composition of which changes with time as Golgi resident enzymes are delivered in retrograde transport vesicles.


Asunto(s)
Aparato de Golgi/fisiología , Fusión de Membrana , Proteínas de la Membrana/fisiología , Proteínas de Transporte Vesicular , Animales , Transporte Biológico , Proteínas Portadoras/fisiología , Retículo Endoplásmico , Exocitosis , Humanos , Membranas Intracelulares/fisiología , Proteínas Qa-SNARE , Proteínas SNARE , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida , Vacuolas/fisiología
19.
Trends Cell Biol ; 8(1): 45-9, 1998 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9695808

RESUMEN

Electron micrographs of the Golgi apparatus typically show a series of flat cisternae stacked together, surrounded by numerous vesicles and tubules. Palade and colleagues established in the 1960s that secretory proteins pass through this morphologically complex organelle as they travel from the endoplasmic reticulum to the cell surface. However, the precise mechanism of transport through the cisternal stack has proven a controversial issue. Recent advances in identifying the molecules responsible for this traffic suggest that the solution may not be far away.


Asunto(s)
Aparato de Golgi/metabolismo , Aparato de Golgi/fisiología , Animales , Transporte Biológico/fisiología , Humanos , Modelos Biológicos
20.
EMBO J ; 17(1): 113-26, 1998 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-9427746

RESUMEN

Intracellular membrane traffic is thought to be regulated in part by SNAREs, integral membrane proteins on transport vesicles (v-SNAREs) and target organelles (t-SNAREs) that bind to each other and mediate bilayer fusion. All known SNARE-mediated fusion events involve a member of the syntaxin family of t-SNAREs. Sequence comparisons identify eight such proteins encoded in the yeast genome, of which six have been characterized. We describe here the remaining two, Tlg1p and Tlg2p. These have the expected biochemical properties of t-SNAREs, and are located in separable compartments which correspond to a putative early endosome and the yeast equivalent of the TGN, respectively. They co-precipitate with the v-SNARE Vti1p, which is implicated in Golgi-endosome traffic and, remarkably, binds to five different syntaxins. Tlg1p also binds the plasma membrane v-SNARE Snc1p. Both Tlg1p and Tlg2p are required for efficient endocytosis and to maintain normal levels of TGN proteins. However, neither is required for intra-Golgi traffic. Since no further syntaxins have been identified in yeast, this implies that the Golgi apparatus can function with a single syntaxin, Sed5p.


Asunto(s)
Endosomas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Endocitosis , Endosomas/ultraestructura , Proteínas Fúngicas/metabolismo , Aparato de Golgi/ultraestructura , Proteínas de la Membrana/química , Microscopía Electrónica , Datos de Secuencia Molecular , Fenotipo , Proteínas Qa-SNARE , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA