Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 34(2)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34644692

RESUMEN

Zircon-type NdVO4and scheelite-type PrVO4have been studied by means of Raman spectroscopy up to approximately 20 GPa. In the first compound, zircon-scheelite and scheelite-fergusonite phase transitions are reported at 6.4(3) and 19.6(4) GPa, respectively. In the case of scheelite-type PrVO4, a reversible phase transition to a PbWO4-III structure is observed at 16.8(5) GPa. In both cases, a scheelite-type structure is recovered in a metastable state at low pressures. The pressure evolution of the Raman modes is also reported. Our experimental findings are supported byab initiocalculations, which allowed us to discuss the role of mechanic and dynamical instabilities in the phase transition mechanisms.

2.
J Phys Condens Matter ; 31(48): 485401, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31422945

RESUMEN

The promising technological material Eu0.1Bi0.9VO4, has been studied for the first time at room-temperature under high-pressure, up to 24.9 GPa, by means of in situ angle dispersive powder x-ray diffraction (XRD). The compound undergoes two phase transitions at 1.9 and 16.1 GPa. The first transition is from the monoclinic fergusonite-type structure (space group I2/a) to a tetragonal scheelite-type structure (space group I41/a), being a ferroelastic-paraelastic transformation similar to that previously reported for isomorphic pristine BiVO4. The second phase transition is first-order in nature. The scheelite-type and the second high-pressure phase coexist in a wide pressure range. A monoclinic structure (space group P21/n) is proposed for the second high-pressure phase. Both transitions are reversible upon decompression. Details of the different crystal structures are reported. All the three observed structures are composed of network of VO4 tetrahedra and BiO8 (or EuO8 due to the substitution of Bi by Eu) dodecahedra. The room-temperature P-V equation of state and axial anisotropic compressibilities of the fergusonite and scheelite polymorphs are also given. In particular, the isothermal compressibility tensor for the monoclinic fergusonite phase has been calculated.

3.
Nanotechnology ; 28(20): 205701, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28358717

RESUMEN

This work reports the structural and vibrational properties of nanocrystals of corundum-type In2O3 (rh-In2O3) at high pressures by using angle-dispersive x-ray diffraction and Raman scattering measurements up to 30 GPa. The equation of state and the pressure dependence of the Raman-active modes of the corundum phase in nanocrystals are in good agreement with previous studies on bulk material and theoretical simulations on bulk rh-In2O3. Nanocrystalline rh-In2O3 showed stability under compression at least up to 20 GPa, unlike bulk rh-In2O3 which gradually transforms to the orthorhombic Pbca (Rh2O3-III-type) structure above 12-14 GPa. The different stability range found in nanocrystalline and bulk corundum-type In2O3 is discussed.

5.
Nano Lett ; 16(8): 5204-12, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27390839

RESUMEN

This paper investigates the electronic structure of wurtzite (W) and rock-salt (RS) Zn1-xCoxO nanoparticles (NPs) by means of optical measurements under pressure (up to 25 GPa), X-ray absorption, and transmission electron microscopy. W-NPs were chemically synthesized at ambient conditions and RS-NPs were obtained by pressure-induced transformation of W-NPs. In contrast to the abrupt phase transition in W-Zn1-xCoxO as thin film or single crystal, occurring sharply at about 9 GPa, spectroscopic signatures of tetrahedral Co(2+) are observed in NPs from ambient pressure to about 17 GPa. Above this pressure, several changes in the absorption spectrum reveal a gradual and irreversible W-to-RS phase transition: (i) the fundamental band-to-band edge shifts to higher photon energies; (ii) the charge-transfer absorption band virtually disappears (or overlaps the fundamental edge); and (iii) the intensity of the crystal-field absorption peaks of Co(2+) around 2 eV decreases by an order of magnitude and shifts to 2.5 eV. After incomplete phase transition pressure cycles, the absorption edge of nontransformed W-NPs at ambient pressure exhibits a blue shift of 0.22 eV. This extra shift is interpreted in terms of quantum confinement effects. The observed gradual phase transition and metastability are related to the NP size distribution: the larger the NP, the lower the W-to-RS transition pressure.

6.
J Phys Condens Matter ; 26(22): 225401, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24810681

RESUMEN

We report an experimental and theoretical high-pressure study of the vibrational properties of synthetic monoclinic bismuth oxide (α-Bi(2)O(3): ), also known as mineral bismite. The comparison of Raman scattering measurements and theoretical lattice-dynamics ab initio calculations is key to understanding the complex vibrational properties of bismite. On one hand, calculations help in the symmetry assignment of phonons and to discover the phonon interactions taking place in this low-symmetry compound, which shows considerable phonon anticrossings; and, on the other hand, measurements help to validate the accuracy of first-principles calculations relating to this compound. We have also studied the pressure-induced amorphization (PIA) of synthetic bismite occurring around 20 GPa and showed that it is reversible below 25 GPa. Furthermore, a partial temperature-induced recrystallization (TIR) of the amorphous sample can be observed above 20 GPa upon heating to 200°C, thus evidencing that PIA at room temperature occurs because of the inability of the α phase to undergo a phase transition to a high-pressure phase. Raman scattering measurements of the TIR sample at room temperature during pressure release have been performed. The interpretation of these results in the light of ab initio calculations of the candidate phases at high pressures has allowed us to tentatively attribute the TIR phase to the recently found high-pressure hexagonal HPC phase and to discuss its lattice dynamics.


Asunto(s)
Bismuto/química , Modelos Químicos , Modelos Moleculares , Simulación por Computador , Ensayo de Materiales , Conformación Molecular , Transición de Fase , Presión , Temperatura de Transición , Vibración
7.
J Phys Condens Matter ; 25(50): 505902, 2013 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-24275846

RESUMEN

We investigate the lattice dynamical and dielectric properties of MgO single crystals and powders by measurements in the mid- and far-infrared frequency region under high pressures, ranging up to 21.7 GPa. The shift of the restrahlen region is used to determine the pressure dependence of the transverse and longitudinal optical modes. The analysis of the refractive index in the mid- and far-infrared region allowed us to obtain the pressure behavior of the static and electronic dielectric constants. The transverse effective charge slowly decreases under high pressure, reflecting the stability of MgO. As a consequence, the pressure dependence of the static and electronic dielectric constants is mainly determined by the pressure dependence of the polar phonon frequency and Penn gap, resulting in a pronounced decrease of the former and a moderate decrease of the latter.


Asunto(s)
Impedancia Eléctrica , Óxido de Magnesio/química , Espectrofotometría Infrarroja/métodos , Cristalización , Presión , Espectroscopía Infrarroja por Transformada de Fourier
8.
J Phys Condens Matter ; 25(11): 115406, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23423689

RESUMEN

We present the results of x-ray diffraction and x-ray absorption spectroscopy experiments in CuAlO(2) under high pressure. We discuss the polarization dependence of the x-ray absorption near-edge structure at the Cu K-edge. XRD under high pressure evidences anisotropic compression, the a-axis being more compressible than the c-axis. EXAFS yields the copper-oxygen bond length, from which the only internal parameter of the delafossite structure is deduced. The combination of anisotropic compression and the internal parameter decrease results in a regularization of the AlO(6) octahedra. The anisotropic compression is related to the chemical trends observed in the lattice parameters when Al is substituted by other trivalent cations. Both experiments evidence the existence of an irreversible phase transition that clearly manifests at 35 ± 2 GPa. The structure of the high-pressure polymorph could not be determined, but it implies a change of the Cu environment, which remains anisotropic. Precursor effects are observed from the lowest pressures, which are possibly related to crystal breaking at a submicroscopic scale with partial reorientation of the crystallites.

9.
J Phys Condens Matter ; 25(2): 025303, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23197076

RESUMEN

We describe the results of x-ray absorption experiments carried out to deduce structural and chemical information in Eu(3+) doped, transparent, oxyfluoride glass and nanostructured glass-ceramic samples. The spectra were measured at the Pb and Eu-L(III) edges. The Eu environment in the glass samples is observed to be similar to that of EuF(3). Complementary x-ray diffraction experiments show that thermal annealing creates ß-PbF(2) type nanocrystals. X-ray absorption indicates that Eu ions act as seeds in the nanocrystal formation. There is evidence of interstitial fluorine atoms around Eu ions as well as Eu dimers. X-ray absorption at the Pb-L(III) edge shows that after the thermal treatment most lead atoms form a PbO amorphous phase and that only 10% of the lead atoms remain available to form ß-PbF(2) type nanocrystals. Both x-ray diffraction and absorption point to a high Eu content in the nanocrystals. Our study suggests new approaches to the oxyfluoride glass-ceramic synthesis in order to further improve their properties.


Asunto(s)
Cerámica/química , Cristalización/métodos , Europio/química , Vidrio/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Espectroscopía de Absorción de Rayos X/métodos , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Transición de Fase
10.
J Phys Condens Matter ; 22(4): 045701, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21386320

RESUMEN

This work describes x-ray absorption measurements under high pressure in ReB(2), complemented by ab initio calculations. The EXAFS analysis yields the average Re-B bond compressibility, which turns out to be χ(ReB) = 5.6(9) × 10(-4) GPa(-1). Combining this information with previous x-ray diffraction experiments we have characterized the network of covalent bonds responsible for the rigidity of the structure. The main conclusion is that the compression is anisotropic and nonhomogeneous, reflecting bonding differences between Re-B and B-B bonds and also between nonequivalent Re-B bonds. The layer defined by boron atoms tends to become flatter under high pressure. As a consequence, the structural rigidity, necessary to attain high hardness values, is compromised.

11.
J Synchrotron Radiat ; 5(Pt 5): 1250-7, 1998 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16687830

RESUMEN

The design of a highly focusing profiled Si(111) Bragg crystal polychromator for dispersive EXAFS (extended X-ray absorption fine structure) experiments is described. The contour of the crystal has been optimized to give the best focus over the full 4-13 keV energy range. The profile optimization has been improved taking into account all the degrees of freedom of the geometry and the results of X-ray tracing simulations. The profile of the crystal has been calculated to take full advantage of the new possibilities given by the undulator source and the optics of beamline ID24 at the European Synchrotron Radiation Facility. Full spot sizes have been measured to be between 20 and 40 microm in the 5-12 keV energy range. These values compare well with X-ray tracing simulations and are the smallest spots ever obtained with energy-dispersive EXAFS optics, keeping, however, a wide enough energy bandpass for most X-ray absorption spectroscopy experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA