Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt A): 378-389, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39096706

RESUMEN

HYPOTHESIS: Nanoparticle-stabilized foams are extremely stable, and flame retardant inorganic nanoparticles should be able to add sealing capacity of firefighting foams on flammable liquid fuels, and hence enhance fire extinguishment performance on liquid fuel fire. In practice, how do flame retardant nanoparticles resist the destructive effect of oil molecules on foam and tune foam properties? EXPERIMENTS: We have prepared a nanoparticle-enhanced foam comprising of hydrocarbon surfactant, short-chain fluorocarbon surfactant, and nanoparticles. The interactions among nanoparticles and surfactant molecules were characterized by using dynamic surface tension and conductivity. Stability, rheology, and oil resistivity on liquid fuel of the nanoparticle-enhanced foam were evaluated systematically. Fire suppression effectiveness of the foams was verified based on a standard experiment. FINDINGS: Foam stability and oil resistivity were enhanced due to self-assembled network structures formed by jammed aggregates composed by nanoparticles and surfactants in Plateau borders and bubble films, providing structural recoverability and enhanced viscoelasticity within foam. Foams containing nano-SiO2, nano-CaCO3, nano-Al(OH)3, and nano-Mg(OH)2 show difference in fire extinguishment due to different ability to enhance foam properties. Foam containing nano-Al(OH)3 shows the strongest adaptation and could shorten fire extinguishing time by 2 times and prolong burn-back time by 2.3 times compared with commercial product.

2.
Gels ; 8(2)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35200504

RESUMEN

The combination of nanoparticles (NP) and surfactant has been intensively studied to improve the thermal stability and optimize the performance of foams. This study focuses on the influence of silica NPs with different concentration on the thermal stability of gel foams based on a mixture of fluorocarbon (FS-50) and hydrocarbon (APG0810) surfactants. The surface activity, conductivity, viscosity, and foaming ability of the APG0810/FS-50/NPs dispersions are characterized. The effects of NP concentration on coarsening, drainage, and decay, as well as of the gel foams under thermal action, are systematically studied. Results show that NP concentration has a significant effect on the molecular interactions of the APG0810/FS-50/NP dispersions. The surface tension and conductivity of the dispersions decrease but the viscosity increases with the increase in NP concentration. The foaming ability of APG0810/FS-50 solution is reduced by the addition of NPs and decreases with the increase in NP concentration. The coarsening, drainage, and decay of the gel foams under thermal action slow down significantly with increasing NP concentration. The thermal stability of the gel foams increases with the addition of NPs and further increases with the increase in NP concentration. This study provides a theoretical guidance for the application for gel foams containing NPs and surfactants in fire-extinguishing agents.

3.
Gels ; 7(4)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34698155

RESUMEN

The foams stabilized by nanoparticles (NPs), water-soluble polymers, and surfactants have potential application prospects in the development of new, environmentally friendly firefighting foams. In the present study, a gel foam containing a water-soluble polymer (xanthan gum, XG), hydrophilic silica NPs, hydrocarbon surfactant (SDS), and fluorocarbon surfactant (FS-50) were prepared. The surface activity, conductivity, viscosity, and foaming ability of foam dispersions were characterized. The gel foam stability under a radiation heat source and temperature distribution in the vertical foam layer were evaluated systematically. The results show that the addition of NPs and XG has a significant effect on the foaming ability, viscosity and foam thermal stability, but has a very subtle effect on the conductivity and surface activity. The foaming ability of the FS-50/SDS solution was enhanced by the addition of NPs, but decreased with increasing the XG concentration. The thermal stability of the foams stabilized by SDS/FS-50/NPs/XG increased with the addition of NPs and increasing XG concentration. Foam drainage and coarsening were significantly decelerated by the addition of NPs and XG. The slower foam drainage and coarsening are the main reason for the intensified foam thermal stability. The results obtained from this study can provide guidance for developing new firefighting foams.

4.
Exp Ther Med ; 16(4): 3275-3285, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30233674

RESUMEN

It is established that a decrease in ß-cell number and deficiency in the function of existing ß-cells contribute to type 1 and type 2 diabetes mellitus. Therefore, a major focus of current research is to identify novel methods of improving the number and function of ß-cells, so as to prevent and/or postpone the development of diabetes mellitus and potentially reverse diabetes mellitus. Based on prior knowledge of the above-mentioned causes, promising therapeutic approaches may include direct transplantation of islets, implantation and subsequent induced differentiation of progenitors/stem cells to ß-cells, replication of pre-existing ß-cells, or activation of endogenous ß-cell progenitors. More recently, with regards to cell replacement and regenerative treatment for diabetes patients, the identification of cellular signaling pathways with related genes or corresponding proteins involved in diabetes has become a topic of interest. However, the majority of pathways and molecules associated with ß-cells remain unresolved, and the specialized functions of known pathways remain unclear, particularly in humans. The current article has evaluated the progress of research on pivotal cellular signaling pathways involved with ß-cell proliferation and survival, and their validity for therapeutic adult ß-cell regeneration in diabetes. More efforts are required to elucidate the cellular events involved in human ß-cell proliferation in terms of the underlying mechanisms and functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA