Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Trends Biotechnol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39237385

RESUMEN

The understanding of cellular energy metabolism activation by engineered scaffolds remains limited, posing challenges for therapeutic applications in tissue regeneration. This study presents biosynthesized poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] and its major degradation product, 3-hydroxybutyrate (3HB), as endogenous bioenergetic fuels that augment cellular anabolism, thereby facilitating the progression of human bone marrow-derived mesenchymal stem cells (hBMSCs) towards osteoblastogenesis. Our research demonstrated that 3HB markedly boosts in vitro ATP production, elevating mitochondrial membrane potential and capillary-like tube formation. Additionally, it raises citrate levels in the tricarboxylic acid (TCA) cycle, facilitating the synthesis of citrate-containing apatite during hBMSCs osteogenesis. Furthermore, 3HB administration significantly increased bone mass in rats with osteoporosis induced by ovariectomy. The findings also showed that P(3HB-co-4HB) scaffold substantially enhances long-term vascularized bone regeneration in rat cranial defect models. These findings reveal a previously unknown role of 3HB in promoting osteogenesis of hBMSCs and highlight the metabolic activation of P(3HB-co-4HB) scaffold for bone regeneration.

2.
Sci Total Environ ; 946: 174368, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38955273

RESUMEN

The possible contamination routes, environmental adaptation, and genetic basis of Cronobacter spp. in infant and follow-up formula production factories and retailed products in mainland China have been determined by laboratory studies and whole-genome comparative analysis in a 7-year nationwide continuous surveillance spanning from 2012 to 2018. The 2-year continuous multicenter surveillance of the production process (conducted in 2013 and 2014) revealed that the source of Cronobacter spp. in the dry-blending process was the raw dry ingredients and manufacturing environment (particularly in the vibro sieve and vacuum cleaner), while in the combined process, the main contamination source was identified as the packing room. It is important to note that, according to the contamination control knowledge obtained from the production process surveillance, the contamination rate of retail powdered infant formula (PIF) and follow-up formula (FUF) products in China decreased significantly from 2016 onward, after improving the hygiene management practices in factories. The prevalence of Cronobacter spp. in retailed PIF and FUF in China in 2018 was dramatically reduced from 1.55 % (61/3925, in 2012) to an average as low as 0.17 % (13/7655 in 2018). Phenotype determination and genomic analysis were performed on a total of 90 Cronobacter spp. isolates obtained from the surveillance. Of the 90 isolates, only two showed resistance to either cefazolin or cefoxitin. The multilocus sequence typing results revealed that C. sakazakii sequence type 1 (ST1), ST37, and C. malonaticus ST7 were the dominant sequence types (STs) collected from the production factories, while C. sakazakii ST1, ST4, ST64, and ST8 were the main STs detected in the retailed PIF and FUF nationwide. One C. sakazakii ST4 isolate (1.1 %, 1/90) had strong biofilm-forming ability and 13 isolates (14.4 %, 13/90) had weak biofilm-forming ability. Genomic analysis revealed that Cronobacter spp. have a relatively stable core-genome and an increasing pan-genome size. Plasmid IncFIB (pCTU3) was prevalent in this genus and some contained 14 antibacterial biocide- and metal-resistance genes (BMRGs) including copper, silver, and arsenic resistant genes. Plasmid IncN_1 was predicted to contain 6 ARGs. This is the first time that a multi-drug resistance IncN_1 type plasmid has been reported in Cronobacter spp. Genomic variations with respect to BMRGs, virulence genes, antimicrobial resistance genes (ARGs), and genes involved in biofilm formation were observed among strains of this genus. There were apparent differences in copies of bcsG and flgJ between the biofilm-forming group and non-biofilm-forming group, indicating that these two genes play key roles in biofilm formation. The findings of this study have improved our understanding of the contamination characteristics and genetic basis of Cronobacter spp. in PIF and FUF and their production environment in China and provide important guidance to reduce contamination with this pathogen during the production of PIF and FUF.


Asunto(s)
Cronobacter , Fórmulas Infantiles , China , Cronobacter/genética , Microbiología de Alimentos , Contaminación de Alimentos/análisis , Humanos , Lactante
3.
Front Microbiol ; 15: 1381457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050630

RESUMEN

Introduction: This study characterized Vibrio alginolyticus isolated from seafood and freshwater products in China (2020). Methods and Results: In total, 122 (95.31%) V. alginolyticus isolates were resistant to at least 1 antibiotic category, and 2 (1.56%) isolates were resistant to at least 3 antibiotic categories and belong to multi-drug resistance (MDR) isolates. A high prevalence rate was observed to be blaCARB (98.04%) encoding beta-lactam resistance, followed by tet (97.06%) encoding tetracycline resistance and fos (4.90%) encoding resistance to fosfomycin. Among the 57 V. alginolyticus isolates, the commonest virulence genes were type III secretion system translocated gene vopD, vopB, and vcrH (54.4%, 31/57), type III secretion system regulated gene tyeA (54.39%), followed by vscI and vscF (50.88%) encoded type III secretion system inner rod protein and needle protein, respectively. Multilocus sequence typing (MLST) showed considerable genetic diversity, with 34 distinct sequence types (STs) identified among 55 isolates. ST421 (n = 5), ST166 (n = 4), ST523 (n = 3), ST516 (n = 3), and ST507 (n = 3) were dominant STs among 55 V. alginolyticus isolates. Discussion: These findings highlight the widespread occurrence of V. alginolyticus in both freshwater and seafood products, underscoring the critical need for vigilant monitoring of these bacteria. Such measures are essential for ensuring effective food safety management and safeguarding public health.

4.
Int J Food Microbiol ; 421: 110804, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38905809

RESUMEN

Pre-cut fresh fruits and vegetables are highly appealing to consumers for their convenience, however, as they are highly susceptible to microbial contamination in processing, the potential risks of foodborne illnesses to public health are not negligible. This study aimed to assess the prevalence, antibiotic susceptibility and molecular characteristics of major foodborne pathogens (Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella) isolated from fresh-cut fruits and vegetables in Beijing, China. 86 stains were isolated from 326 samples, with S. aureus being the highest prevalence (15.38 %), followed by E. coli (9.23 %) and L. monocytogenes (1.85 %), while no Salmonella was detected. The prevalence by type of food indicated that fruit trays and mixed vegetables were more susceptible to contamination by pathogens. 98 % of S. aureus were resistant to at least of one antibiotic, and showed a high resistance rate to benzylpenicillin (90 %) and oxacillin (48 %). Among 25 E. coli isolates, 57.67 % of which exhibited multi-drug resistance, with common resist to trimethoprim/sulfamethoxazole (66.67 %) and ampicillin (63.33 %). A total of 9 sequence types (STs) and 8 spa types were identified in 35 S. aureus isolates, with ST398-t34 being the predominant type (42.86 %). Additionally, analysis of 25 E. coli isolates demonstrated significant heterogeneity, characterized by 22 serotypes and 18 STs. Genomic analysis revealed that 5 and 44 distinct antibiotic resistance genes (ARGs) in S. aureus and E. coli, respectively. Seven quinolone resistance-determining regions (QRDRs) mutations were identified in E. coli isolates, of which GyrA (S83L) was the most frequently detected. All the S. aureus and E. coli isolates harbored virulence genes. ARGs in S. aureus and E. coli showed a significant positive correlation with plasmids. Furthermore, one L. monocytogenes isolate, which was ST101 and serogroupIIc from watermelon sample, harbored virulence genes (inlA and inlB) and LIPI-1 pathogenic islands (prfA, plcA, hly and actA), which posed potential risks for consumer's health. This study focused on the potential microbial risk of fresh-cut fruits and vegetables associated with foodborne diseases, improving the scientific understanding towards risk assessment related to ready-to-eat foods.


Asunto(s)
Antibacterianos , Escherichia coli , Microbiología de Alimentos , Frutas , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Verduras , Verduras/microbiología , Frutas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Escherichia coli/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Beijing/epidemiología , Salmonella/genética , Salmonella/aislamiento & purificación , Salmonella/clasificación , Salmonella/efectos de los fármacos , Prevalencia , Contaminación de Alimentos/análisis , China/epidemiología , Listeria monocytogenes/genética , Listeria monocytogenes/aislamiento & purificación , Listeria monocytogenes/clasificación , Listeria monocytogenes/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/epidemiología
5.
Int J Food Microbiol ; 418: 110737, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38749264

RESUMEN

Prevalent in marine, estuarine and coastal environments, Vibrio parahaemolyticus is one of the major foodborne pathogens which can cause acute gastroenteritis through consumption of contaminated food. This study encompassed antimicrobial resistance, molecular characteristics and phylogenetic relationships of 163 V. parahaemolyticus isolated from aquatic foods across 15 provinces in China. The isolates showed high resistance rates against ampicillin (90.80 %, 148/163) and cefazolin (72.39 %, 118/163). Only 5 isolates demonstrated multi-drug resistance (MDR) phenotypes. A total of 37 different antibiotic resistance genes (ARGs) in correlation with seven antimicrobial categories were identified. tet(34) and tet(35) were present in all 163 isolates. Other most prevalent ARGs were those conferring resistance to ß-lactams, with prevalence rate around 18.40 % (30/163). The virulence genes tdh and trh were found in 17 (10.43 %) and 9 (5.52 %) isolates, respectively. Totally 121 sequence types (STs) were identified through whole genome analysis, among which 60 were novel. The most prevalent sequence type was ST3 (9.20 %, 15/163), which shared the same genotype profile of trh_, tdh+ and blaCARB-22+. Most of the tdh+V. parahaemolyticus isolates was clustered into a distinctive clade by the phylogenetic analysis. Our study showed that the antimicrobial resistance of V. parahaemolyticus in aquatic foods in China was moderate. However, the emerging of MDR isolates implicate strengthened monitoring is needed for the better treatment of human V. parahaemolyticus infections. High genetic diversity and virulence potential of the isolates analyzed in this study help better understanding and evaluating the risk of V. parahaemolyticus posed to public health.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Filogenia , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/efectos de los fármacos , Vibrio parahaemolyticus/aislamiento & purificación , Vibrio parahaemolyticus/patogenicidad , Vibrio parahaemolyticus/clasificación , China/epidemiología , Antibacterianos/farmacología , Microbiología de Alimentos , Alimentos Marinos/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Genoma Bacteriano , Factores de Virulencia/genética , Humanos , Genotipo
6.
Nat Commun ; 15(1): 206, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182559

RESUMEN

Sharing of genetic elements among different pathogens and commensals inhabiting same hosts and environments has significant implications for antimicrobial resistance (AMR), especially in settings with high antimicrobial exposure. We analysed 661 Escherichia coli and Salmonella enterica isolates collected within and across hosts and environments, in 10 Chinese chicken farms over 2.5 years using data-mining methods. Most isolates within same hosts possessed the same clinically relevant AMR-carrying mobile genetic elements (plasmids: 70.6%, transposons: 78%), which also showed recent common evolution. Supervised machine learning classifiers revealed known and novel AMR-associated mutations and genes underlying resistance to 28 antimicrobials, primarily associated with resistance in E. coli and susceptibility in S. enterica. Many were essential and affected same metabolic processes in both species, albeit with varying degrees of phylogenetic penetration. Multi-modal strategies are crucial to investigate the interplay of mobilome, resistance and metabolism in cohabiting bacteria, especially in ecological settings where community-driven resistance selection occurs.


Asunto(s)
Antiinfecciosos , Salmonella enterica , Animales , Granjas , Pollos , Escherichia coli/genética , Filogenia , China/epidemiología , Salmonella enterica/genética
7.
Nat Food ; 4(8): 707-720, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37563495

RESUMEN

China is the largest global consumer of antimicrobials and improving surveillance methods could help to reduce antimicrobial resistance (AMR) spread. Here we report the surveillance of ten large-scale chicken farms and four connected abattoirs in three Chinese provinces over 2.5 years. Using a data mining approach based on machine learning, we analysed 461 microbiomes from birds, carcasses and environments, identifying 145 potentially mobile antibiotic resistance genes (ARGs) shared between chickens and environments across all farms. A core set of 233 ARGs and 186 microbial species extracted from the chicken gut microbiome correlated with the AMR profiles of Escherichia coli colonizing the same gut, including Arcobacter, Acinetobacter and Sphingobacterium, clinically relevant for humans, and 38 clinically relevant ARGs. Temperature and humidity in the barns were also correlated with ARG presence. We reveal an intricate network of correlations between environments, microbial communities and AMR, suggesting multiple routes to improving AMR surveillance in livestock production.


Asunto(s)
Antibacterianos , Pollos , Animales , Humanos , Antibacterianos/farmacología , Pollos/microbiología , Farmacorresistencia Bacteriana/genética , Granjas , Metagenómica , Mataderos , Escherichia coli , Aprendizaje Automático
8.
Artículo en Inglés | MEDLINE | ID: mdl-36767192

RESUMEN

Microbial contamination in raw milk and dairy products can detrimentally affect product quality and human health. In this study, the aerobic plate count, aerobic Bacillus abundance, thermophilic aerobic Bacillus abundance, and alkaline phosphatase activity were determined in 435 raw milk, 451 pasteurized milk, and 617 sterilized milk samples collected from 13 Chinese provinces (or municipalities). Approximately 9.89% and 2.22% of raw milk and pasteurized milk samples exceeded the threshold values for the aerobic plate count, respectively. The proportions of aerobic Bacillus in raw milk, pasteurized milk, and sterilized milk were 54.02%, 14.41%, and 1.30%, respectively. The proportions of thermophilic aerobic Bacillus species were 7.36% in raw milk and 4.88% in pasteurized milk samples, and no bacteria were counted in sterilized milk. Approximately 36.18% of raw milk samples contained >500,000 mU/L of alkaline phosphatase activity, while 9.71% of pasteurized milk samples contained >350 mU/L. For raw milk, there was a positive correlation between the aerobic plate count, the aerobic Bacillus abundance, and the alkaline phosphatase activity, and there was a positive correlation between the aerobic Bacillus abundance, the thermophilic aerobic Bacillus count, and the alkaline phosphatase activity. For pasteurized milk, there was a positive correlation between the aerobic plate count, the aerobic Bacillus abundance, and the thermophilic aerobic Bacillus count; however, the alkaline phosphatase activity had a negative correlation with the aerobic plate count, the aerobic Bacillus abundance, and the thermophilic aerobic Bacillus abundance. These results facilitate the awareness of public health safety issues and the involvement of dairy product regulatory agencies in China.


Asunto(s)
Fosfatasa Alcalina , Bacillus , Microbiología de Alimentos , Leche , Animales , Fosfatasa Alcalina/metabolismo , Bacillus/aislamiento & purificación , Bacillus/metabolismo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Recuento de Colonia Microbiana , Leche/metabolismo , Leche/microbiología , Salud Pública
9.
ISME J ; 17(1): 21-35, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36151458

RESUMEN

A debate is currently ongoing as to whether intensive livestock farms may constitute reservoirs of clinically relevant antimicrobial resistance (AMR), thus posing a threat to surrounding communities. Here, combining shotgun metagenome sequencing, machine learning (ML), and culture-based methods, we focused on a poultry farm and connected slaughterhouse in China, investigating the gut microbiome of livestock, workers and their households, and microbial communities in carcasses and soil. For both the microbiome and resistomes in this study, differences are observed across environments and hosts. However, at a finer scale, several similar clinically relevant antimicrobial resistance genes (ARGs) and similar associated mobile genetic elements were found in both human and broiler chicken samples. Next, we focused on Escherichia coli, an important indicator for the surveillance of AMR on the farm. Strains of E. coli were found intermixed between humans and chickens. We observed that several ARGs present in the chicken faecal resistome showed correlation to resistance/susceptibility profiles of E. coli isolates cultured from the same samples. Finally, by using environmental sensing these ARGs were found to be correlated to variations in environmental temperature and humidity. Our results show the importance of adopting a multi-domain and multi-scale approach when studying microbial communities and AMR in complex, interconnected environments.


Asunto(s)
Antiinfecciosos , Microbiota , Microbiología del Suelo , Animales , Humanos , Antibacterianos , Pollos/microbiología , Escherichia coli/genética , Genes Bacterianos , Ganado/microbiología , Farmacorresistencia Bacteriana
10.
ACS Appl Mater Interfaces ; 15(1): 364-377, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36577512

RESUMEN

To treat large-scale wounds or chronic ulcers, it is highly desirable to develop multifunctional wound dressings that integrate antibacterial and angiogenic properties. While many biomaterials have been fabricated as wound dressings for skin regeneration, few reports have addressed the issue of complete skin regeneration due to the lack of vasculature and hair follicles. Herein, an instructive poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) fibrous wound dressing that integrates an antibacterial ciprofloxacin (CIP) and pro-angiogenic dimethyloxalylglycine (DMOG) is successfully prepared via electrospinning. The resultant dressings exhibit suitable flexibility with tensile strength and elongation at break up to 4.08 ± 0.18 MPa and 354.8 ± 18.4%, respectively. The in vitro results revealed that the groups of P34HB/CIP/DMOG dressings presented excellent biocompatibility on cell proliferation and significantly promote the spread and migration of L929 cells in both transwell and scratch assays. Capillary-like tube formation is also significantly enhanced in the P34HB/CIP/DMOG group dressings. Additionally, dressings from the P34HB/CIP and P34HB/CIP/DMOG groups show a broad spectrum of antimicrobial action against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. In vivo studies further demonstrated that the prepared dressings in the P34HB/CIP/DMOG group not only improved wound closure, increased re-epithelialization and collagen formation, as well as reduced inflammatory response but also increased angiogenesis and remodeling, resulting in complete skin regeneration and hair follicles. Collectively, this work provides a simple but efficient approach for the design of a versatile wound dressing with the potential to have a synergistic effect on the rapid stimulation of angiogenesis as well as antibacterial activity in full-thickness skin repair.


Asunto(s)
Inductores de la Angiogénesis , Polihidroxialcanoatos , Polihidroxialcanoatos/farmacología , Cicatrización de Heridas , Antibacterianos/farmacología , Piel , Ciprofloxacina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA