Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
1.
Sci Total Environ ; 947: 174612, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992382

RESUMEN

Cydia pomonella granulovirus (CpGV) is a highly specific and environmentally friendly pathogenic virus successfully used as a biological insecticide against codling moth larvae. Continuous application of CpGV has led to high levels of resistance in codling moth, Cydia pomonella (C. pomonella). Nevertheless, the specific molecular mechanisms underlying the development of resistance in codling moths to CpGV have been rarely investigated. This study explored the potential antiviral immune roles of codling moth antimicrobial peptides (AMPs) against CpGV. A total of 11 AMP genes classified in cecropin, defensin, gloverin, and attacin subfamilies, were identified in the codling moth genome. The cecropin and gloverin subfamilies were found to be the ancestral genes of the AMP gene family. The expression of two AMP genes (CmGlo1 and CmAtt1) significantly increased following CpGV challenge, and CmGlo1 and CmAtt1 gene silencing resulted in a significant increase in CpGV replication in codling moth larvae. The hemolymph and fat body serve as major viral immune functional tissues in codling moth larvae. Moreover, zhongshengmycin significantly reduced the diversity and abundance of codling moth larvae gut microbiota, thereby suppressing the expression of CmAtt1 AMP gene. We also found that the combination of the virus with zhongshengmycin would enhance the insecticidal effects of CpGV. This study provides the first explanation of the molecular mechanisms driving CpGV immune function development in codling moths, approached from the perspective of the codling moth itself. Additionally, we introduced an alternative approach to combat codling moth in the field by combining antibiotics with biopesticides to amplify the insecticidal effects of the latter.

2.
Theor Appl Genet ; 137(7): 176, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969812

RESUMEN

Circular RNAs (circRNAs), a class of non-coding RNA molecules, are recognized for their unique functions; however, their responses to herbicide stress in Brassica napus remain unclear. In this study, the role of circRNAs in response to herbicide treatment was investigated in two rapeseed cultivars: MH33, which confers non-target-site resistance (NTSR), and EM28, which exhibits target-site resistance (TSR). The genome-wide circRNA profiles of herbicide-stressed and non-stressed seedlings were analyzed. The findings indicate that NTSR seedlings exhibited a greater abundance of circRNAs, shorter lengths of circRNAs and their parent genes, and more diverse functions of parent genes compared with TSR seedlings. Compared to normal-growth plants, the herbicide-stressed group exhibited similar trends in the number of circRNAs, functions of parent genes, and differentially expressed circRNAs as observed in NTSR seedlings. In addition, a greater number of circRNAs that function as competing microRNA (miRNA) sponges were identified in the herbicide stress and NTSR groups compared to the normal-growth and TSR groups, respectively. The differentially expressed circRNAs were validated by qPCR. The differntially expressed circRNA-miRNA networks were predicted, and the mRNAs targeted by these miRNAs were annotated. Our results suggest that circRNAs play a crucial role in responding to herbicide stress, exhibiting distinct responses between NTSR and TSR in rapeseed. These findings offer valuable insights into the mechanisms underlying herbicide resistance in rapeseed.


Asunto(s)
Brassica napus , Regulación de la Expresión Génica de las Plantas , Resistencia a los Herbicidas , Herbicidas , ARN Circular , ARN de Planta , Brassica napus/genética , Brassica napus/efectos de los fármacos , Brassica napus/crecimiento & desarrollo , ARN Circular/genética , Herbicidas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , ARN de Planta/genética , Resistencia a los Herbicidas/genética , Plantones/genética , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Estrés Fisiológico/genética , MicroARNs/genética , MicroARNs/metabolismo , Genoma de Planta
3.
Biochemistry ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985857

RESUMEN

The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein-coupled receptor that has emerged as a promising therapeutic target in cancer and autoimmune diseases. In the present study, we solved the cryo-electron microscopy (cryo-EM) structure of the human CCR8-Gi complex in the absence of a ligand at 2.58 Å. Structural analysis and comparison revealed that our apo CCR8 structure undergoes some conformational changes and is similar to that in the CCL1-CCR8 complex structure, indicating an active state. In addition, the key residues of CCR8 involved in the recognition of LMD-009, a potent nonpeptide agonist, were investigated by mutating CCR8 and testing the calcium flux induced by LMD-009-CCR8 interaction. Three mutants of CCR8, Y1133.32A, Y1724.64A, and E2867.39A, showed a dramatically decreased ability in mediating calcium mobilization, indicating their key interaction with LMD-009 and key roles in activation. These structural and biochemical analyses enrich molecular insights into the agonism and activation of CCR8 and will facilitate CCR8-targeted therapy.

4.
Front Immunol ; 15: 1407035, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979420

RESUMEN

Introduction: The Hand, Foot and Mouth Disease (HFMD), caused by enterovirus 71 infection, is a global public health emergency. Severe HFMD poses a significant threat to the life and well-being of children. Numerous studies have indicated that the occurrence of severe HFMD is associated with cytokine storm. However, the precise molecular mechanism underlying cytokine storm development remains elusive, and there are currently no safe and effective treatments available for severe HFMD in children. Methods: In this study, we established a mouse model of severe HFMD to investigate the molecular mechanisms driving cytokine storm. We specifically analyzed metabolic disturbances, focusing on arginine/ornithine metabolism, and assessed the potential therapeutic effects of spermine, an ornithine metabolite. Results: Our results identified disturbances in arginine/ornithine metabolism as a pivotal factor driving cytokine storm onset in severe HFMD cases. Additionally, we discovered that spermine effectively mitigated the inflammatory injury phenotype observed in mice with severe HFMD. Discussion: In conclusion, our findings provide novel insights into the molecular mechanisms underlying severe HFMD from a metabolic perspective while offering a promising new strategy for its safe and effective treatment.


Asunto(s)
Arginina , Citocinas , Modelos Animales de Enfermedad , Enfermedad de Boca, Mano y Pie , Ornitina , Animales , Enfermedad de Boca, Mano y Pie/inmunología , Ratones , Arginina/metabolismo , Humanos , Citocinas/metabolismo , Espermina/metabolismo , Femenino , Enterovirus Humano A/inmunología , Masculino , Ratones Endogámicos C57BL , Índice de Severidad de la Enfermedad
5.
EMBO Rep ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026012

RESUMEN

Genome transcription and replication of influenza A virus (FluA), catalyzed by viral RNA polymerase (FluAPol), are delicately controlled across the virus life cycle. A switch from transcription to replication occurring at later stage of an infection is critical for progeny virion production and viral non-structural protein NS2 has been implicated in regulating the switch. However, the underlying regulatory mechanisms and the structure of NS2 remained elusive for years. Here, we determine the cryo-EM structure of the FluAPol-NS2 complex at ~3.0 Å resolution. Surprisingly, three domain-swapped NS2 dimers arrange three symmetrical FluPol dimers into a highly ordered barrel-like hexamer. Further structural and functional analyses demonstrate that NS2 binding not only hampers the interaction between FluAPol and the Pol II CTD because of steric conflicts, but also impairs FluAPol transcriptase activity by stalling it in the replicase conformation. Moreover, this is the first visualization of the full-length NS2 structure. Our findings uncover key molecular mechanisms of the FluA transcription-replication switch and have implications for the development of antivirals.

6.
Environ Pollut ; : 124577, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032546

RESUMEN

This study examines the impact of textile dye contamination on the structure of soil fungal communities near a Shaoxing textile dye factory. We quantified the concentrations of various textile dyes, including anthraquinone azodye and phthalocyanine, which ranged from 20.20 to 140.62 mg kgˆ-1, 102.01 to 698.12 mg kgˆ-1, and 7.78 to 42.65 mg kgˆ-1, respectively, within a 1000 m radius of the factory. Our findings indicate that as dye concentration increases, the biodiversity of soil fungi, as measured by the Chao1 index, decreases significantly, highlighting the profound influence of dye contamination on fungal community structure. Additionally, microbial correlation network analysis revealed a reduction in fungal interactions correlating with increased dye concentrations. We also observed that textile dyes suppressed carbon and nitrogen metabolism in fungi while elevating the transcription levels of antioxidant-related genes. Enzymes such as lignin peroxidase (LiP), manganese peroxidase (MnP), laccase (Lac), dye-decolorizing peroxidases (DyPs), and versatile peroxidase (VP) were upregulated in contaminated soils, underscoring the critical role of fungi in dye degradation. These insights contribute to the foundational knowledge required for developing in situ bioremediation technologies for contaminated farmlands.

7.
BMC Genomics ; 25(1): 705, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030501

RESUMEN

At the 3' end of the C2 gene in the mammalian TRB locus, a distinct reverse TRBV30 gene (named TRBV31 in mice) has been conserved throughout evolution. In the fully annotated TRB locus of 14 mammals (including six orders), we observed noteworthy variations in the localization and quality of the reverse V30 genes and Recombination Signal Sequences (RSSs) in the gene trees of 13 mammals. Conversely, the forward V29 genes and RSSs were generally consistent with the species tree of their corresponding species. This finding suggested that the evolution of the reverse V30 gene was not synchronous and likely played a crucial role in regulating adaptive immune responses. To further investigate this possibility, we utilized single-cell TCR sequencing (scTCR-seq) and high-throughput sequencing (HTS) to analyze TCRß CDR3 repertoires from both central and peripheral tissues of Primates (Homo sapiens and Macaca mulatta), Rodentia (Mus musculus: BALB/c, C57BL/6, and Kunming mice), Artiodactyla (Bos taurus and Bubalus bubalis), and Chiroptera (Rhinolophus affinis and Hipposideros armige). Our investigation revealed several novel observations: (1) The reverse V30 gene exhibits classical rearrangement patterns adhering to the '12/23 rule' and the 'D-J rearrangement preceding the V-(D-J) rearrangement'. This results in the formation of rearranged V30-D2J2, V30-D1J1, and V30-D1J2. However, we also identified 'special rearrangement patterns' wherein V30-D rearrangement preceding D-J rearrangement, giving rise to rearranged V30-D2-J1 and forward Vx-D2-J. (2) Compared to the 'deletional rearrangement' (looping out) of forward V1-V29 genes, the reverse V30 gene exhibits preferential utilization with 'inversional rearrangement'. This may be attributed to the shorter distance between the V30 gene and D gene and the 'inversional rearrangement' modes. In summary, in the mammalian TRB locus, the reverse V30 gene has been uniquely preserved throughout evolution and preferentially utilized in V(D)J recombination, potentially serving a significant role in adaptive immunity. These results will pave the way for novel and specialized research into the mechanisms, efficiency, and function of V(D)J recombination in mammals.


Asunto(s)
Evolución Molecular , Mamíferos , Animales , Mamíferos/genética , Humanos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124690, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38909556

RESUMEN

Peanut oil, prized for its unique taste and nutritional value, grapples with the pressing issue of adulteration by cost-cutting vendors seeking higher profits. In response, we introduce a novel approach using near-infrared spectroscopy to non-invasively and cost-effectively identify adulteration in peanut oil. Our study, analyzing spectral data of both authentic and intentionally adulterated peanut oil, successfully distinguished high-quality pure peanut oil (PPEO) from adulterated oil (AO) through rigorous analysis. By combining near-infrared spectroscopy with factor analysis (FA) and partial least squares regression (PLS), we achieved discriminant accuracies exceeding 92 % (S > 2) and 89 % (S > 1) for FA models 1 and 2, respectively. The PLS model demonstrated strong predictive capabilities, with a prediction coefficient (R2) surpassing 93.11 and a root mean square error (RMSECV) below 4.43. These results highlight the effectiveness of NIR spectroscopy in confirming the authenticity of peanut oil and detecting adulteration in its composition.

9.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 378-382, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38710522

RESUMEN

One of the most prevalent malignancies in women is cervical cancer. Cervical cancer is mostly brought on by chronic high-risk human papillomavirus 16 (HPV16) and HPV18 infection. Currently, the widely used HPV vaccines are the bivalent Cervarix, the tetravalent Gardasil, and the 9-valent Gardasil-9.There are differences in T cell effector molecule changes, B cell antibody level, duration, age and the injection after vaccination of the three vaccines.


Asunto(s)
Linfocitos B , Vacunas contra Papillomavirus , Linfocitos T , Humanos , Vacunas contra Papillomavirus/inmunología , Vacunas contra Papillomavirus/administración & dosificación , Femenino , Linfocitos T/inmunología , Linfocitos B/inmunología , Infecciones por Papillomavirus/prevención & control , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Vacunación , Neoplasias del Cuello Uterino/prevención & control , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/virología , Vacuna Tetravalente Recombinante contra el Virus del Papiloma Humano Tipos 6, 11 , 16, 18/inmunología , Vacuna Tetravalente Recombinante contra el Virus del Papiloma Humano Tipos 6, 11 , 16, 18/administración & dosificación , Virus del Papiloma Humano
10.
Sci Transl Med ; 16(746): eadk8198, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718132

RESUMEN

The phosphate modification of drugs is a common chemical strategy to increase solubility and allow for parenteral administration. Unfortunately, phosphate modifications often elicit treatment- or dose-limiting pruritus through an unknown mechanism. Using unbiased high-throughput drug screens, we identified the Mas-related G protein-coupled receptor X4 (MRGPRX4), a primate-specific, sensory neuron receptor previously implicated in itch, as a potential target for phosphate-modified compounds. Using both Gq-mediated calcium mobilization and G protein-independent GPCR assays, we found that phosphate-modified compounds potently activate MRGPRX4. Furthermore, a humanized mouse model expressing MRGPRX4 in sensory neurons exhibited robust phosphomonoester prodrug-evoked itch. To characterize and confirm this interaction, we further determined the structure of MRGPRX4 in complex with a phosphate-modified drug through single-particle cryo-electron microscopy (cryo-EM) and identified critical amino acid residues responsible for the binding of the phosphate group. Together, these findings explain how phosphorylated drugs can elicit treatment-limiting itch and identify MRGPRX4 as a potential therapeutic target to suppress itch and to guide future drug design.


Asunto(s)
Modelos Animales de Enfermedad , Prurito , Receptores Acoplados a Proteínas G , Animales , Prurito/metabolismo , Prurito/inducido químicamente , Prurito/patología , Prurito/tratamiento farmacológico , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Ratones , Células HEK293 , Fosforilación/efectos de los fármacos , Fosfatos/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Profármacos/farmacología , Microscopía por Crioelectrón
11.
Cell Death Discov ; 10(1): 173, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605001

RESUMEN

The cell death and survival paradox in various biological processes requires clarification. While spore development causes maternal cell death in Bacillus species, the involvement of other cell death pathways in sporulation remains unknown. Here, we identified a novel ArsR family transcriptional regulator, CdsR, and found that the deletion of its encoding gene cdsR causes cell lysis and inhibits sporulation. To our knowledge, this is the first report of an ArsR family transcriptional regulator governing cell death. We found that CdsR directly repressed lrgAB expression. Furthermore, lrgAB overexpression resulted in cell lysis without sporulation, akin to the cdsR mutant, suggesting that LrgAB, a holin-like protein, induces cell death in Bacillus spp. The lrgAB mutation increases abnormal cell numbers during spore development. In conclusion, we propose that a novel repressor is vital for inhibiting LrgAB-dependent cell lysis.

12.
Sci Adv ; 10(14): eadl4600, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579006

RESUMEN

Quantifying the structural variants (SVs) in nonhuman primates could provide a niche to clarify the genetic backgrounds underlying human-specific traits, but such resource is largely lacking. Here, we report an accurate SV map in a population of 562 rhesus macaques, verified by in-house benchmarks of eight macaque genomes with long-read sequencing and another one with genome assembly. This map indicates stronger selective constrains on inversions at regulatory regions, suggesting a strategy for prioritizing them with the most important functions. Accordingly, we identified 75 human-specific inversions and prioritized them. The top-ranked inversions have substantially shaped the human transcriptome, through their dual effects of reconfiguring the ancestral genomic architecture and introducing regional mutation hotspots at the inverted regions. As a proof of concept, we linked APCDD1, located on one of these inversions and down-regulated specifically in humans, to neuronal maturation and cognitive ability. We thus highlight inversions in shaping the human uniqueness in brain development.


Asunto(s)
Genoma , Genómica , Animales , Humanos , Macaca mulatta , Encéfalo
13.
Virus Res ; 345: 199381, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38679392

RESUMEN

Porcine epidemic diarrhea (PED) is a highly contagious swine intestinal disease caused by PED virus (PEDV). Vaccination is a promising strategy to prevent and control PED. Previous studies have confirmed that glycosylation could regulate the immunogenicity of viral antigens. In this study, we constructed three recombinant PEDVs which removed the glycosylation sites in RBD. Viral infection assays revealed that similar replication characteristics between the recombinant viruses and parental PEDV. Although animal challenging study demonstrated that the glycosylation sites in RBD do not affect the pathogenicity of PEDV, we found that removing the glycosylation sites on the RBD regions could promote the IgG and neutralization titer in vivo, suggesting deglycosylation in RBD could enhance the immunogenicity of PEDV. These findings demonstrated that removal of the glycosylation sites in RBD is a promising method to develop PEDV vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Virus de la Diarrea Epidémica Porcina , Glicoproteína de la Espiga del Coronavirus , Enfermedades de los Porcinos , Animales , Virus de la Diarrea Epidémica Porcina/inmunología , Virus de la Diarrea Epidémica Porcina/genética , Glicosilación , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Porcinos , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Vacunas Virales/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Células Vero , Chlorocebus aethiops , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Inmunogenicidad Vacunal , Ratones
14.
Chemosphere ; 354: 141739, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503383

RESUMEN

Considering the persistent and covert nature of heavy metal soil contamination, the sustainable development of ecological environments and food safety is at significant risk. Our study focuses on remediating soils contaminated with chromium (Cr); we introduce an advanced remediation material, iron oxide phosphoric acid-loaded activated biochar (HFBC), synthesized through pyrolysis. This HFBC displays greater microporosity, fewer impurities, and enhanced efficiency for the remediation process. Our research utilized a comprehensive set of analytical techniques, including Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS), alongside adsorption studies to elucidate the Cr removal mechanism. The effectiveness of HFBC in remediation was influenced by several factors: the pH level, dosage of HFBC, the initial concentration of Cr, and the ambient temperature. Our results indicated an optimal chromium (VI) adsorption capacity of 55.5 mg/g by HFBC at a pH of 6.0 and a temperature of 25 °C, with the process adhering to the pseudo-second-order kinetic model and the Langmuir adsorption isotherm, thus suggesting spontaneity in the uptake method. Moreover, this mechanism encompasses both adsorption and reduction reactions. Using HFBC in pot experiments with cabbage indicated not only an increase in soil pH and cation exchange capacity (CEC), but also a surge in bacterial community abundance. Significant reductions in bioavailable chromium were also recorded. Interestingly, HFBC addition bolstered the growth of cabbage, while concurrently diminishing chromium accumulation within the plant, particularly notable as the HFBC application rate increased. In summation, the HFBC produced in our study has demonstrated convincing efficacy in removing chromium from aqueous solutions and soil. Moreover, the positive agronomic implications of its use, such as enhanced plant growth and reduced heavy metal uptake by plants, indicate its high potential for operational value in the domain of environmental remediation of heavy metals.


Asunto(s)
Cloruros , Compuestos Férricos , Ácidos Fosfóricos , Typhaceae , Contaminantes Químicos del Agua , Agua , Suelo/química , Cromo/química , Carbón Orgánico/química , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética
15.
Microorganisms ; 12(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38543630

RESUMEN

Bacillus thuringiensis produces insecticidal crystal proteins encoded by cry or cyt genes and targets a variety of insect pests. We previously found that a strong promoter of a DeoR family transcriptional regulator (HD73_5014) can efficiently drive cry1Ac expression in B. thuringiensis HD73. Here, we investigated the regulation of neighbor genes by HD73_5014. The HD73_5014 homologs are widely distributed in Gram-positive bacterial species. Its neighbor genes include pepV, rsuA, and ytgP, which encode dipeptidase, rRNA pseudouridine synthase and polysaccharide biosynthesis protein, respectively. The four open reading frames (ORFs) are organized to be a pepR gene cluster in HD73. RT-PCR analysis revealed that the rsuA and ytgP genes formed a transcriptional unit (rsuA-ytgP operon), while pepV formed a transcriptional unit in HD73. Promoter-lacZ fusion assays showed that the pepV and rsuA-ytgP promoters are regulated by HD73_5014. EMSA experiments showed that HD73_5014 directly binds to the pepV promoter region but not to the rusA-ytgP promoter region. Thus, the HD73_5014 transcriptional regulator, which controls the expression of the dipeptidase pepV, was named PepR (dipeptidase regulator). We also confirmed the direct regulation between PepR and PepV by the increased sensitivity to vancomycin in ΔpepV and ΔpepR mutants compared to HD73.

16.
Discov Oncol ; 15(1): 90, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38551775

RESUMEN

BACKGROUND: Cervical cancer (CC) is a danger to women's health, especially in many developing countries. Metabolomics can make the connection between genotypes and phenotypes. It provides a wide spectrum profile of biological processes under pathological or physiological conditions. METHOD: In this study, we conducted plasma metabolomics of healthy volunteers and CC patients and integratively analyzed them with public CC tissue transcriptomics from Gene Expression Omnibus (GEO). RESULT: Here, we screened out a panel of 5 metabolites to precisely distinguish CC patients from healthy volunteers. Furthermore, we utilized multi-omics approaches to explore patients with stage I-IIA1 and IIA2-IV4 CC and comprehensively analyzed the dysregulation of genes and metabolites in CC progression. We identified that plasma levels of trimethylamine N-oxide (TMAO) were associated with tumor size and regarded as a risk factor for CC. Moreover, we demonstrated that TMAO could promote HeLa cell proliferation in vitro. In this study, we delineated metabolic profiling in healthy volunteers and CC patients and revealed that TMAO was a potential biomarker to discriminate between I-IIA1 and IIA2-IV patients to indicate CC deterioration. CONCLUSION: Our study identified a diagnostic model consisting of five metabolites in plasma that can effectively distinguish CC from healthy volunteers. Furthermore, we proposed that TMAO was associated with CC progression and might serve as a potential non-invasive biomarker to predict CC substage. IMPACT: These findings provided evidence of the important role of metabolic molecules in the progression of cervical cancer disease, as well as their ability as potential biomarkers.

17.
J Immunother Cancer ; 12(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38458637

RESUMEN

BACKGROUND: Dendritic cell (DC)-mediated antigen presentation is essential for the priming and activation of tumor-specific T cells. However, few drugs that specifically manipulate DC functions are available. The identification of drugs targeting DC holds great promise for cancer immunotherapy. METHODS: We observed that type 1 conventional DCs (cDC1s) initiated a distinct transcriptional program during antigen presentation. We used a network-based approach to screen for cDC1-targeting therapeutics. The antitumor potency and underlying mechanisms of the candidate drug were investigated in vitro and in vivo. RESULTS: Sitagliptin, an oral gliptin widely used for type 2 diabetes, was identified as a drug that targets DCs. In mouse models, sitagliptin inhibited tumor growth by enhancing cDC1-mediated antigen presentation, leading to better T-cell activation. Mechanistically, inhibition of dipeptidyl peptidase 4 (DPP4) by sitagliptin prevented the truncation and degradation of chemokines/cytokines that are important for DC activation. Sitagliptin enhanced cancer immunotherapy by facilitating the priming of antigen-specific T cells by DCs. In humans, the use of sitagliptin correlated with a lower risk of tumor recurrence in patients with colorectal cancer undergoing curative surgery. CONCLUSIONS: Our findings indicate that sitagliptin-mediated DPP4 inhibition promotes antitumor immune response by augmenting cDC1 functions. These data suggest that sitagliptin can be repurposed as an antitumor drug targeting DC, which provides a potential strategy for cancer immunotherapy.


Asunto(s)
Antineoplásicos , Diabetes Mellitus Tipo 2 , Neoplasias , Ratones , Animales , Humanos , Dipeptidil Peptidasa 4/metabolismo , Células Dendríticas , Fosfato de Sitagliptina/farmacología , Fosfato de Sitagliptina/uso terapéutico , Fosfato de Sitagliptina/metabolismo , Presentación de Antígeno , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
18.
Brain Res Bull ; 210: 110928, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493836

RESUMEN

Epilepsy-associated cognitive disorder (ECD), a prevalent comorbidity in epilepsy patients, has so far uncharacterized etiological origins. Our prior work revealed that lysyl oxidase (Lox) acted as a novel contributor of ferroptosis, a recently discovered cell death mode in the regulation of brain function. However, the role of Lox-mediated ferroptosis in ECD remains unknown. ECD mouse model was established 2 months later following a single injection of kainic acid (KA) for. After chronic treatment with KA, mice were treated with different doses (30 mg/kg, 100 mg/kg and 300 mg/kg) of Lox inhibitor BAPN. Additionally, hippocampal-specific Lox knockout mice was also constructed and employed to validate the role of Lox in ECD. Cognitive functions were assessed using novel object recognition test (NOR) and Morris water maze test (MWM). Protein expression of phosphorylated cAMP-response element binding (CREB), a well-known molecular marker for evaluation of cognitive performance, was also detected by Western blot. The protein distribution of Lox was analyzed by immunofluorescence. In KA-induced ECD mouse model, ferroptosis process was activated according to upregulation of 4-HNE protein and a previously discovered ferroptosis in our group, namely, Lox was remarkably increased. Pharmacological inhibition of Lox by BAPN at the dose of 100 mg/kg significantly increased the discrimination index following NOR test and decreased escape latency as well as augmented passing times within 60 s following MWM test in ECD mouse model. Additionally, deficiency of Lox in hippocampus also led to pronounced improvement of deficits in ECD model. These findings indicate that the ferroptosis regulatory factor, Lox, is activated in ECD. Ablation of Lox by either pharmacological intervention or genetic manipulation ameliorates the impairment in ECD mouse model, which suggest that Lox serves as a promising therapeutic target for treating ECD in clinic.


Asunto(s)
Disfunción Cognitiva , Epilepsia , Humanos , Ratones , Animales , Proteína-Lisina 6-Oxidasa/genética , Proteína-Lisina 6-Oxidasa/metabolismo , Aminopropionitrilo/farmacología , Regulación de la Expresión Génica , Modelos Animales de Enfermedad , Disfunción Cognitiva/tratamiento farmacológico
19.
J Sci Food Agric ; 104(9): 5252-5261, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38308571

RESUMEN

BACKGROUND: Adding ZaoShao liquor (high-concentration liquor) is one of the most important steps in the brewing process of Shaoxing Jiafan wine, a product protected by Chinese geographical indications. The focus of this study is the effect of different additive amounts of liquor on the flavor of end products. RESULTS: In this study, four kinds of Shaoxing Jiafan wine were brewed by changing the amount of ZaoShao liquor. Headspace solid-phase microextraction and gas chromatography-mass spectrometry were used to detect the flavor substances of four kinds of Jiafan wine. The difference in flavor of four kinds of Jiafan wine was evaluated by electronic nose analysis technology and verified by sensory evaluation. Finally, the reliability of the experimental results was verified through an aroma reconstruction experiment of rice wine. In this study, the differences in flavoring substances under different amounts of ZaoShao liquor were verified from various angles. The results showed that the flavors of the four kinds of wines were significantly different. CONCLUSION: The composition of flavor substances in Shaoxing rice wine varies with the amount of ZaoShao liquor. This study provided a scientific basis for the improvement of production technology of Shaoxing wine. © 2024 Society of Chemical Industry.


Asunto(s)
Aromatizantes , Cromatografía de Gases y Espectrometría de Masas , Odorantes , Gusto , Compuestos Orgánicos Volátiles , Vino , Vino/análisis , Aromatizantes/química , Aromatizantes/análisis , Humanos , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Nariz Electrónica , Microextracción en Fase Sólida/métodos , Oryza/química , Vitis/química , Masculino , Adulto , Femenino , China
20.
Brain Imaging Behav ; 18(3): 662-674, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38349505

RESUMEN

Early onset depression (EOD) and late onset depression (LOD) are thought to have different pathogeneses, but lack of pathological evidence. In the current study we describe the dynamic rich-club properties of patients with EOD and LOD to address this question indirectly. We recruited 82 patients with late life depression (EOD 40, LOD 42) and 90 healthy controls. Memory, executive function and processing speed were measured, and resting-stage functional MRI was performed with all participants. We constructed a dynamic functional connectivity network and carried out rich-club and modularity analyses. Normalized mutual information (NMI) was applied to describe the variance in rich-club nodes distribution and partitioning. The NMI coefficient of rich club nodes distribution among the three groups was the lowest in the EOD patients (F = 4.298; P = 0.0151, FDR = 0.0231), which was positively correlated with rich-club connectivity (R = 0.886, P < 0.001) and negatively correlated with memory (R = -0.347, P = 0.038) in the EOD group. In the LOD patients, non-rich-club connectivity was positively correlated with memory (R = 0.353, P = 0.030 and R = 0.420, P = 0.009). Furthermore, local connectivity was positively correlated with processing speed in the LOD patients (R = 0.374, P = 0.021). The modular partition was different between the EOD patients and the HCs (P = 0.0013 < 0.05/3). The temporal instability of rich-club nodes was found in the EOD patients, but not the LOD patients, supporting the hypothesis that EOD and LOD result from different pathogenesis, and showing that the instability of the rich-club nodes across time might disrupt rich-club connectivity.


Asunto(s)
Encéfalo , Depresión , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Adulto , Depresión/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Anciano , Conectoma/métodos , Edad de Inicio , Memoria/fisiología , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Función Ejecutiva/fisiología , Pruebas Neuropsicológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...