Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(13): 5952-5962, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38506754

RESUMEN

The presence of oxyanions, such as nitrate (NO3-) and phosphate (PO43-), regulates the nucleation and growth of goethite (Gt) and hematite (Hm) during the transformation of ferrihydrite (Fh). Our previous studies showed that oxyanion surface complexes control the rate and pathway of Fh transformation to Gt and Hm. However, how oxyanion surface complexes control the mechanism of Gt and Hm nucleation and growth during the Fh transformation is still unclear. We used synchrotron scattering methods and cryogenic transmission electron microscopy to investigate the effects of NO3- outer-sphere complexes and PO43- inner-sphere complexes on the mechanism of Gt and Hm formation from Fh. Our TEM results indicated that Gt particles form through a two-step model in which Fh particles first transform to Gt nanoparticles and then crystallographically align and grow to larger particles by oriented attachment (OA). In contrast, for the formation of Hm, imaging shows that Fh particles first aggregate and then transform to Hm through interface nucleation. This is consistent with our X-ray scattering results, which demonstrate that NO3- outer-sphere and PO43- inner-sphere complexes promote the formation of Gt and Hm, respectively. These results have implications for understanding the coupled interactions of oxyanions and iron oxy-hydroxides in Earth-surface environments.


Asunto(s)
Compuestos Férricos , Compuestos de Hierro , Minerales , Adsorción
2.
Sci Total Environ ; 890: 164313, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37211112

RESUMEN

Plastic pollution is a major threat facing our environment. To understand the full effects, we must first characterize how plastics break down in environmental systems. Heretofore, there has been little work examining how exposure to sewage sludge facilitates the degradation of plastics, particularly of plastics that have been previously weathered. Herein, we characterize how the crystallinity, surface chemistry, and morphology of polylactic acid (PLA) and polyethylene (PE) films change due to sludge exposure. In this work, sludge-induced changes in carbonyl index were found to depend on the level of prior exposure to ultraviolet (UV) irradiation. The carbonyl indices of un-irradiated films increased while those of UV-aged films decreased after 35 days of sludge exposure. In addition, the carbon­oxygen and hydroxyl bond indices of PE films increased with sludge exposure, suggesting the surface oxidation of PE. As for PLA, crystallinity was found to increase with sludge exposure, consistent with a chain scission mechanism. This work will help to predict the behavior of plastic films after transfer from wastewater to sewage sludge.


Asunto(s)
Polietileno , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Poliésteres , Plásticos
3.
ACS Appl Mater Interfaces ; 13(27): 32126-32135, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34213325

RESUMEN

Metal-ceramic nanocomposites exhibit exceptional mechanical properties with a combination of high strength, toughness, and hardness that are not achievable in monolithic metals or ceramics, which make them valuable for applications in fields such as the aerospace and automotive industries. In this study, interpenetrating nanocomposites of three-dimensionally ordered macroporous (3DOM) tungsten-silicon oxycarbide (W-SiOC) were prepared, and their mechanical properties were investigated. In these nanocomposites, the crystalline tungsten and amorphous silicon oxycarbide phases both form continuous and interpenetrating networks, with some discrete free carbon nanodomains. The W-SiOC material inherits the periodic structure from its 3DOM W matrix, and this periodic structure can be maintained up to 1000 °C. In situ SEM micropillar compression tests demonstrated that the 3DOM W-SiOC material could sustain a maximum average stress of 1.1 GPa, a factor of 22 greater than that of the 3DOM W matrix, resulting in a specific strength of 640 MPa/(Mg/m3) at 30 °C. Deformation behavior of the developed 3DOM nanocomposite in a wide temperature range (30-575 °C) was investigated. The deformation mode of 3DOM W-SiOC exhibited a transition from fracture-dominated deformation at low temperatures to plastic deformation above 425 °C.

4.
Langmuir ; 37(27): 8115-8128, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34191521

RESUMEN

Marine oil dispersants typically contain blends of surfactants dissolved in solvents. When introduced to the crude oil-seawater interface, dispersants facilitate the breakup of crude oil into droplets that can disperse in the water column. Recently, questions about the environmental persistence and toxicity of commercial dispersants have led to the development of "greener" dispersants consisting solely of food-grade surfactants such as l-α-phosphatidylcholine (lecithin, L) and polyoxyethylenated sorbitan monooleate (Tween 80, T). Individually, neither L nor T is effective at dispersing crude oil, but mixtures of the two (LT blends) work synergistically to ensure effective dispersion. The reasons for this synergy remain unexplained. More broadly, an unresolved challenge is to be able to predict whether a given surfactant (or a blend) can serve as an effective dispersant. Herein, we investigate whether the LT dispersant effectiveness can be correlated with thermodynamic phase behavior in model systems. Specifically, we study ternary "DOW" systems comprising LT dispersant (D) + a model oil (hexadecane, O) + synthetic seawater (W), with the D formulation being systematically varied (across 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0 L:T weight ratios). We find that the most effective LT dispersants (60:40 and 80:20 L:T) induce broad Winsor III microemulsion regions in the DOW phase diagrams (Winsor III implies that the microemulsion coexists with aqueous and oil phases). This correlation is generally consistent with expectations from hydrophilic-lipophilic deviation (HLD) calculations, but specific exceptions are seen. This study then outlines a protocol that allows the phase behavior to be observed on short time scales (ca. hours) and provides a set of guidelines to interpret the results. The complementary use of HLD calculations and the outlined fast protocol are expected to be used as a predictive model for effective dispersant blends, providing a tool to guide the efficient formulation of future marine oil dispersants.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Lecitinas , Contaminación por Petróleo/análisis , Polisorbatos , Tensoactivos , Contaminantes Químicos del Agua/análisis
6.
ACS Appl Mater Interfaces ; 12(44): 49971-49981, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33079519

RESUMEN

Metal-organic framework (MOF) materials have shown promise in many applications, ranging from gas storage to absorption and catalysis. Because of the high porosity and low density of many MOFs, densification methods such as pelletization and extrusion are needed for practical use and for commercialization of MOF materials. Therefore, it is important to elucidate the mechanical properties of MOFs and to develop methods of further enhancing their mechanical strength. Here, we demonstrate the influence of phase purity and the presence of a pore-reinforcing component on elastic modulus and yield stress of NU-1000 MOFs through nanoindentation methods and finite element simulation. Three types of NU-1000 single crystals were compared: phase-pure NU-1000 prepared with biphenyl-4-carboxylic acid as a modulator (NU-1000-bip), NU-1000 prepared with benzoic acid as a modulator (NU-1000-ben), which results in an additional, denser impurity phase of NU-901, and NU-1000-bip whose mesopores were infiltrated with silica (SiOx(OH)y@NU-1000) by nanocasting methods. By maintaining phase purity and minimizing defects, the elastic modulus could be enhanced by nearly an order of magnitude: phase-pure NU-1000-bip crystals exhibited an elastic modulus of 21 GPa, whereas the value for NU-1000-ben crystals was only 3 GPa. The introduction of silica into the mesopores of NU-1000-bip did not strongly affect the measured elastic modulus (19 GPa) but significantly increased the load at failure from 2000 µN to 3000-4000 µN.

7.
ACS Omega ; 5(11): 6069-6073, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32226889

RESUMEN

Capping agents play an important role in the synthesis of silver nanostructures in polyol solvents. In this work, we demonstrate that using a small amount of tannic acid (TA), a reducing capping agent, in addition to poly(vinylpyrrolidone) (PVP), a protective capping agent, can lead to the production of monodisperse spherical silver nanoparticles (Ag NPs) that are stable with respect to particle aggregation for at least 100 days and have particle sizes ranging from 16 to 28 nm depending on the TA concentration. We hypothesize that the complexation between PVP and TA can lead to the formation of a stable particle coating and a fast Ag+ reduction rate at a relatively high TA concentration. Both effects can benefit the formation of small spherical Ag NPs with narrow size distribution.

8.
J Am Chem Soc ; 142(1): 242-250, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31851505

RESUMEN

The postmodification of metal organic frameworks (MOFs) affords exceedingly high surface area materials with precisely installed chemical features, which provide new opportunities for detailed structure-function correlation in the field of catalysis. Here, we significantly expand upon the number of vapor-phase postmodification processes reported to date through screening a library of atomic layer deposition (ALD) precursors, which span metals across the periodic table and which include ligands from four distinct precursor classes. With a large library of precursors and synthesis conditions, we discern trends in the compatibility of precursor classes for well-behaved ALD in MOFs (AIM) and identify challenges and solutions to more precise postsynthetic modification.


Asunto(s)
Gases/química , Estructuras Metalorgánicas/química , Catálisis , Relación Estructura-Actividad
9.
J Am Chem Soc ; 141(23): 9292-9304, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31117650

RESUMEN

Mononuclear and dinuclear copper species were synthesized at the nodes of an NU-1000 metal-organic framework (MOF) via cation exchange and subsequent oxidation at 200 °C in oxygen. Copper-exchanged MOFs are active for selectively converting methane to methanol at 150-200 °C. At 150 °C and 1 bar methane, approximately a third of the copper centers are involved in converting methane to methanol. Methanol productivity increased by 3-4-fold and selectivity increased from 70% to 90% by increasing the methane pressure from 1 to 40 bar. Density functional theory showed that reaction pathways on various copper sites are able to convert methane to methanol, the copper oxyl sites with much lower free energies of activation. Combining studies of the stoichiometric activity with characterization by in situ X-ray absorption spectroscopy and density functional theory, we conclude that dehydrated dinuclear copper oxyl sites formed after activation at 200 °C are responsible for the activity.

10.
J Am Chem Soc ; 140(45): 15309-15318, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30352506

RESUMEN

Promoters are ubiquitous in industrial heterogeneous catalysts. The wider roles of promoters in accelerating catalysis and/or controlling selectivity are, however, not well understood. A model system has been developed where a heterobimetallic active site comprising an active metal (Rh) and a promoter ion (Ga) is preassembled and delivered onto a metal-organic framework (MOF) support, NU-1000. The Rh-Ga sites in NU-1000 selectively catalyze the hydrogenation of acyclic alkynes to E-alkenes. The overall stereoselectivity is complementary to the well-known Lindlar's catalyst, which generates Z-alkenes. The role of the Ga in promoting this unusual selectivity is evidenced by the lack of semihydrogenation selectivity when Ga is absent and only Rh is present in the active site.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA