Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Psychogeriatrics ; 20(4): 391-397, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32034853

RESUMEN

AIM: As the number of persons with dementia has increased so has the need for both specialized care and long-term care centres. Professional caregivers working in these centres encounter specific problems, including stress, burnout, and feelings of dissatisfaction, each which can affect the quality of care. Due to the nature of their work, they are more likely to experience stress, which may lead to burnout syndrome. Therefore, the aim of this work was to assess the results of a practical training programme with regard to burnout among direct care professionals in a nursing home for people with dementia. METHODS: A practical training programme was conducted for caregivers at the Sagrado Corazón de Jesús Nursing Home in Cuenca, Spain. The programme used a dynamic, interactive methodology to provide training related to concepts and strategies for dementia care. Weekly 2-h sessions were held over 9 months, from April 2016 to January 2017, with the post-test administered in February. Pretest and post-test measures were taken for a sample of 36 caregivers. An anova was used to analyze the differences in means before and after training. An ancova was also performed to determine the effects of the intervention. RESULTS: The results revealed a significant difference between pre- and post-intervention emotional exhaustion and depersonalization scores. Personal accomplishment scores improved, but the changes were not significant. CONCLUSION: A practical training programme for direct care professionals working with dementia patients can decrease burnout levels.


Asunto(s)
Agotamiento Profesional , Cuidadores , Demencia , Anciano , Cuidadores/psicología , Demencia/terapia , Humanos , Casas de Salud , Proyectos Piloto , España
2.
J Physiol ; 597(7): 1957-1973, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30746715

RESUMEN

KEY POINTS: In the epididymis, elaborate communication networks between epithelial cells are important with respect to establishing an optimal acidic luminal environment for the maturation and storage of spermatozoa, which is essential for male fertility. Proton secretion by epididymal clear cells is achieved via the proton pumping V-ATPase located in their apical membrane. In the present study, we dissect the molecular mechanisms by which clear cells respond to luminal ATP and adenosine to modulate their acidifying activity via the adenosine receptor ADORA2B and the pH-sensitive ATP receptor P2X4. We demonstrate that the hydrolysis of ATP to produce adenosine by ectonucleotidases plays a key role in V-ATPase-dependent proton secretion, and is part of a feedback loop that ensures acidification of the luminal compartment These results help us better understand how professional proton-secreting cells respond to extracellular cues to modulate their functions, and how they communicate with neighbouring cells. ABSTRACT: Cell-cell cross-talk is crucial for the dynamic function of epithelia, although how epithelial cells detect and respond to variations in extracellular stimuli to modulate their environment remains incompletely understood. In the present study, we used the epididymis as a model system to investigate epithelial cell regulation by luminal factors. In the epididymis, elaborate communication networks between the different epithelial cell types are important for establishing an optimal acidic luminal environment for the maturation and storage of spermatozoa. In particular, clear cells (CCs) secrete protons into the lumen via the proton pumping V-ATPase located in their apical membrane, a process that is activated by luminal alkalinization. However, how CCs detect luminal pH variations to modulate their function remains uncharacterized. Purinergic regulation of epithelial transport is modulated by extracellular pH in other tissues. In the present study, functional analysis of the mouse cauda epididymis perfused in vivo showed that luminal ATP and adenosine modulate the acidifying activity of CCs via the purinergic ADORA2B and P2X4 receptors, and that luminal adenosine content is itself regulated by luminal pH. Altogether, our observations illustrate mechanisms by which CCs are activated by pH sensitive P2X4 receptor and ectonucleotidases, providing a feedback mechanism for the maintenance of luminal pH. These novel mechanisms by which professional proton-secreting cells respond to extracellular cues to modulate their functions, as well as how they communicate with neighbouring cells, might be translatable to other acidifying epithelia.


Asunto(s)
Adenosina Trifosfato/farmacología , Adenosina/farmacología , Epidídimo/fisiología , Purinérgicos , Agonistas Purinérgicos/farmacología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Epidídimo/efectos de los fármacos , Regulación de la Expresión Génica , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Antagonistas Purinérgicos/farmacología , Receptor de Adenosina A2B/genética , Receptor de Adenosina A2B/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética
3.
J Am Soc Nephrol ; 29(2): 545-556, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29222395

RESUMEN

Acidosis is an important complication of AKI and CKD. Renal intercalated cells (ICs) express the proton pumping vacuolar H+-ATPase (V-ATPase) and are extensively involved in acid-base homeostasis. H+ secretion in type A intercalated cells (A-ICs) is regulated by apical vesicle recycling and stimulated by cAMP. In other cell types, cAMP is increased by extracellular agonists, including adenosine, through purinergic receptors. Adenosine is a Food and Drug Administration-approved drug, but very little is known about the effect of adenosine on IC function. Therefore, we investigated the role of adenosine in the regulation of V-ATPase in ICs. Intravenous treatment of mice with adenosine or agonists of ADORA2A and ADORA2B purinergic P1 receptors induced V-ATPase apical membrane accumulation in medullary A-ICs but not in cortical A-ICs or other IC subtypes. Both receptors are located in A-IC apical membranes, and adenosine injection increased urine adenosine concentration and decreased urine pH. Cell fractionation showed that adenosine or an ADORA2A or ADORA2B agonist induced V-ATPase translocation from vesicles to the plasma membrane and increased protein kinase A (PKA)-dependent protein phosphorylation in purified medullary ICs that were isolated from mice. Either ADORA2A or ADORA2B antagonists or the PKA inhibitor mPKI blocked these effects. Finally, a fluorescence pH assay showed that adenosine activates V-ATPase in isolated medullary ICs. Our study shows that medullary A-ICs respond to luminal adenosine through ADORA2A and ADORA2B receptors in a cAMP/PKA pathway-dependent mechanism to induce V-ATPase-dependent H+ secretion.


Asunto(s)
Agonistas del Receptor de Adenosina A2/farmacología , Adenosina/metabolismo , Adenosina/farmacología , Células Epiteliales/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Equilibrio Ácido-Base , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Membrana Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Homeostasis , Riñón/citología , Masculino , Ratones , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos , Receptor de Adenosina A2A , Receptor de Adenosina A2B , Vesículas Transportadoras , Urinálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA