Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 10(1): 7167, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32346044

RESUMEN

N-methyl-D-aspartate receptor (NMDAr) antagonists such as ketamine (KET) produce psychotic-like behavior in both humans and animal models. NMDAr hypofunction affects normal oscillatory dynamics and synaptic plasticity in key brain regions related to schizophrenia, particularly in the hippocampus and the prefrontal cortex. It has been shown that prior long-term potentiation (LTP) occluded the increase of synaptic efficacy in the hippocampus-prefrontal cortex pathway induced by MK-801, a non-competitive NMDAr antagonist. However, it is not clear whether LTP could also modulate aberrant oscillations and short-term plasticity disruptions induced by NMDAr antagonists. Thus, we tested whether LTP could mitigate the electrophysiological changes promoted by KET. We recorded HPC-PFC local field potentials and evoked responses in urethane anesthetized rats, before and after KET administration, preceded or not by LTP induction. Our results show that KET promotes an aberrant delta-high-gamma cross-frequency coupling in the PFC and an enhancement in HPC-PFC evoked responses. LTP induction prior to KET attenuates changes in synaptic efficiency and prevents the increase in cortical gamma amplitude comodulation. These findings are consistent with evidence that increased efficiency of glutamatergic receptors attenuates cognitive impairment in animal models of psychosis. Therefore, high-frequency stimulation in HPC may be a useful tool to better understand how to prevent NMDAr hypofunction effects on synaptic plasticity and oscillatory coordination in cortico-limbic circuits.


Asunto(s)
Disfunción Cognitiva , Hipocampo/fisiopatología , Ketamina/efectos adversos , Potenciación a Largo Plazo/efectos de los fármacos , Corteza Prefrontal/fisiopatología , Animales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Hipocampo/metabolismo , Ketamina/farmacología , Masculino , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Exp Neurol ; 304: 90-101, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29458058

RESUMEN

Mood disorders are associated to functional unbalance in mesolimbic and frontal cortical circuits. As a commonly used mood stabilizer, lithium acts through multiple biochemical pathways, including those activated by muscarinic cholinergic receptors crucial for hippocampal-prefrontal communication. Therefore, here we investigated the effects of lithium on prefrontal cortex responses under cholinergic drive. Lithium-treated rats were anesthetized with urethane and implanted with a ventricular cannula for muscarinic activation, a recording electrode in the medial prefrontal cortex (mPFC), and a stimulating electrode in the intermediate hippocampal CA1. Either of two forms of synaptic plasticity, long-term potentiation (LTP) or depression (LTD), were induced during pilocarpine effects, which were monitored in real time through local field potentials. We found that lithium attenuates the muscarinic potentiation of cortical LTP (<20 min) but enhances the muscarinic potentiation of LTD maintenance (>80 min). Moreover, lithium treatment promoted significant cross-frequency coupling between CA1 theta (3-5 Hz) and mPFC low-gamma (30-55 Hz) oscillations. Interestingly, lithium by itself did not affect any of these measures. Thus, lithium pretreatment and muscarinic activation synergistically modulate the hippocampal-prefrontal connectivity. Because these alterations varied with time, oscillatory parameters, and type of synaptic plasticity, our study suggests that lithium influences prefrontal-related circuits through intricate dynamics, informing future experiments on mood disorders.


Asunto(s)
Antimaníacos/farmacología , Cloruro de Litio/farmacología , Vías Nerviosas/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Animales , Ritmo Gamma/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Agonistas Muscarínicos/farmacología , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Wistar , Ritmo Teta/efectos de los fármacos
3.
Front Syst Neurosci ; 9: 158, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635548

RESUMEN

Autism is a neurodevelopmental disorder clinically characterized by deficits in communication, lack of social interaction and repetitive behaviors with restricted interests. A number of studies have reported that sensory perception abnormalities are common in autistic individuals and might contribute to the complex behavioral symptoms of the disorder. In this context, hearing incongruence is particularly prevalent. Considering that some of this abnormal processing might stem from the unbalance of inhibitory and excitatory drives in brain circuitries, we used an animal model of autism induced by valproic acid (VPA) during pregnancy in order to investigate the tonotopic organization of the primary auditory cortex (AI) and its local inhibitory circuitry. Our results show that VPA rats have distorted primary auditory maps with over-representation of high frequencies, broadly tuned receptive fields and higher sound intensity thresholds as compared to controls. However, we did not detect differences in the number of parvalbumin-positive interneurons in AI of VPA and control rats. Altogether our findings show that neurophysiological impairments of hearing perception in this autism model occur independently of alterations in the number of parvalbumin-expressing interneurons. These data support the notion that fine circuit alterations, rather than gross cellular modification, could lead to neurophysiological changes in the autistic brain.

4.
Front Cell Neurosci ; 9: 149, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25972784

RESUMEN

Cortical GABAergic interneurons constitute an extremely diverse population of cells organized in a well-defined topology of precisely interconnected cells. They play a crucial role regulating inhibitory-excitatory balance in brain circuits, gating sensory perception, and regulating spike timing to brain oscillations during distinct behaviors. Dysfunctions in the establishment of proper inhibitory circuits have been associated to several brain disorders such as autism, epilepsy, and schizophrenia. In the rodent adult cortex, inhibitory neurons are generated during the second gestational week from distinct progenitor lineages located in restricted domains of the ventral telencephalon. However, only recently, studies have revealed some of the mechanisms generating the heterogeneity of neuronal subtypes and their modes of integration in brain networks. Here we will discuss some the events involved in the production of cortical GABAergic neuron diversity with focus on the interaction between intrinsically driven genetic programs and environmental signals during development.

5.
Epilepsy Behav ; 24(4): 391-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22704998

RESUMEN

The role of the substantia nigra pars reticulata (SNPr) and superior colliculus (SC) network in rat strains susceptible to audiogenic seizures still remain underexplored in epileptology. In a previous study from our laboratory, the GABAergic drugs bicuculline (BIC) and muscimol (MUS) were microinjected into the deep layers of either the anterior SC (aSC) or the posterior SC (pSC) in animals of the Wistar audiogenic rat (WAR) strain submitted to acoustic stimulation, in which simultaneous electroencephalographic (EEG) recording of the aSC, pSC, SNPr and striatum was performed. Only MUS microinjected into the pSC blocked audiogenic seizures. In the present study, we expanded upon these previous results using the retrograde tracer Fluorogold (FG) microinjected into the aSC and pSC in conjunction with quantitative EEG analysis (wavelet transform), in the search for mechanisms associated with the susceptibility of this inbred strain to acoustic stimulation. Our hypothesis was that the WAR strain would have different connectivity between specific subareas of the superior colliculus and the SNPr when compared with resistant Wistar animals and that these connections would lead to altered behavior of this network during audiogenic seizures. Wavelet analysis showed that the only treatment with an anticonvulsant effect was MUS microinjected into the pSC region, and this treatment induced a sustained oscillation in the theta band only in the SNPr and in the pSC. These data suggest that in WAR animals, there are at least two subcortical loops and that the one involved in audiogenic seizure susceptibility appears to be the pSC-SNPr circuit. We also found that WARs presented an increase in the number of FG+ projections from the posterior SNPr to both the aSC and pSC (primarily to the pSC), with both acting as proconvulsant nuclei when compared with Wistar rats. We concluded that these two different subcortical loops within the basal ganglia are probably a consequence of the WAR genetic background.


Asunto(s)
Ondas Encefálicas/fisiología , Epilepsia Refleja/patología , Epilepsia Refleja/fisiopatología , Sustancia Negra/fisiología , Colículos Superiores/fisiología , Ácido gamma-Aminobutírico/metabolismo , Estimulación Acústica/efectos adversos , Animales , Conducta Animal/efectos de los fármacos , Bicuculina/farmacología , Ondas Encefálicas/efectos de los fármacos , Modelos Animales de Enfermedad , Estimulación Eléctrica/efectos adversos , Epilepsia Refleja/tratamiento farmacológico , GABAérgicos/farmacología , Masculino , Microinyecciones , Muscimol/farmacología , Muscimol/uso terapéutico , Vías Nerviosas/fisiología , Ratas , Ratas Mutantes , Ratas Wistar , Estilbamidinas , Colículos Superiores/efectos de los fármacos
6.
Pesqui. vet. bras ; Pesqui. vet. bras;29(9): 731-735, Sept. 2009. ilus
Artículo en Portugués | LILACS | ID: lil-532844

RESUMEN

As afecções gastrintestinais dos cavalos são agravadas por complicações como a laminite, cuja etiopatogenia está relacionada à degradação da membrana basal do tecido laminar por metaloproteinases (MMPs). A ativação das MMPs pode ocorrer devido à liberação local de citocinas inflamatórias ou enzimas provenientes de leucócitos infiltrados no tecido laminar. O objetivo deste trabalho foi avaliar as alterações morfológicas do tecido laminar de equinos com síndrome cólica letal e sua provável associação com parâmetros clínicos e laboratoriais. Observou-se intensa destruição da arquitetura laminar, principalmente nos animais com alterações físicas e laboratoriais mais acentuadas, como tempo de preenchimento capilar prolongado (TPC), membranas mucosas congestas, taquicardia, hemoconcentração e redução nas contagens de plaquetas e leucócitos. Os resultados sinalizam o provável momento do desenvolvimento de lesões do tecido laminar em equinos com síndrome cólica, no qual é possível adotar medidas preventivas contra a laminite.


The gastrointestinal diseases of horses are aggravated by complications such as laminitis. The laminitis etiopathogeny are connected with lamellar basement membrane degradation by matrix metalloproteinases (MMPs). Inflammatory cytokines and leukocytes enzymes can active MMPs. The object of this study was to evaluate morphological changes on lamellar tissue of horses with colic syndrome and its association with clinical and laboratorial parameters. It was observed intensive destruction of lamellar architecture, mainly on animals with severe physical and laboratorial alterations, such as delayed capillary refill time, congested mucous membrane, tachycardia, hemoconcentration and low count of platelet and leukocytes. The results sign to the most likely moment of development of lamellar tissue injuries in horses with colic syndrome, which can be adopted preventive measures against laminitis.


Asunto(s)
Animales , Caballos/lesiones , Cólico/complicaciones , Miembro Anterior/patología , Miembro Posterior/patología , Tracto Gastrointestinal/lesiones , Tracto Gastrointestinal/patología , Endotoxemia/epidemiología , Endotoxemia/veterinaria
7.
Pesqui. vet. bras ; 29(9): 731-735, 2009. ilus
Artículo en Portugués | VETINDEX | ID: vti-14592

RESUMEN

As afecções gastrintestinais dos cavalos são agravadas por complicações como a laminite, cuja etiopatogenia está relacionada à degradação da membrana basal do tecido laminar por metaloproteinases (MMPs). A ativação das MMPs pode ocorrer devido à liberação local de citocinas inflamatórias ou enzimas provenientes de leucócitos infiltrados no tecido laminar. O objetivo deste trabalho foi avaliar as alterações morfológicas do tecido laminar de equinos com síndrome cólica letal e sua provável associação com parâmetros clínicos e laboratoriais. Observou-se intensa destruição da arquitetura laminar, principalmente nos animais com alterações físicas e laboratoriais mais acentuadas, como tempo de preenchimento capilar prolongado (TPC), membranas mucosas congestas, taquicardia, hemoconcentração e redução nas contagens de plaquetas e leucócitos. Os resultados sinalizam o provável momento do desenvolvimento de lesões do tecido laminar em equinos com síndrome cólica, no qual é possível adotar medidas preventivas contra a laminite.(AU)


The gastrointestinal diseases of horses are aggravated by complications such as laminitis. The laminitis etiopathogeny are connected with lamellar basement membrane degradation by matrix metalloproteinases (MMPs). Inflammatory cytokines and leukocytes enzymes can active MMPs. The object of this study was to evaluate morphological changes on lamellar tissue of horses with colic syndrome and its association with clinical and laboratorial parameters. It was observed intensive destruction of lamellar architecture, mainly on animals with severe physical and laboratorial alterations, such as delayed capillary refill time, congested mucous membrane, tachycardia, hemoconcentration and low count of platelet and leukocytes. The results sign to the most likely moment of development of lamellar tissue injuries in horses with colic syndrome, which can be adopted preventive measures against laminitis.(AU)


Asunto(s)
Animales , Caballos/lesiones , Miembro Anterior/patología , Miembro Posterior/patología , Cólico/complicaciones , Tracto Gastrointestinal/lesiones , Tracto Gastrointestinal/patología , Endotoxemia/epidemiología , Endotoxemia/veterinaria
8.
Epilepsy Behav ; 14 Suppl 1: 47-53, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18926929

RESUMEN

Activity-dependent changes in synaptic efficacy (i.e., synaptic plasticity) can alter the way neurons communicate and process information as a result of experience. Synaptic plasticity mechanisms involve both molecular and structural modifications that affect synaptic functioning, either enhancing or depressing neuronal transmission. They include redistribution of postsynaptic receptors, activation of intracellular signaling cascades, and formation/retraction of dendritic spines, among others. During the sleep-wake cycle, as the result of particular neurochemical and neuronal firing modes, distinct oscillatory patterns organize the activity of neuronal populations, modulating synaptic plasticity. Such modulation, for example, has been shown in the visual cortex following sleep deprivation and in the ability to induce hippocampal long-term potentiation during sleep. In epilepsy, synchronized behavioral states tend to contribute to the initiation of paroxystic discharges and are considered more epileptogenic than desynchronized states. Here, we review some of the current understandings of synaptic plasticity changes in wake and sleep states and how sleep may affect epileptic seizures.


Asunto(s)
Epilepsia/fisiopatología , Plasticidad Neuronal/fisiología , Sueño/fisiología , Sinapsis/fisiología , Vigilia/fisiología , Animales , Humanos , Red Nerviosa/patología , Red Nerviosa/fisiopatología
9.
Rev Assoc Med Bras (1992) ; 54(5): 461-6, 2008.
Artículo en Portugués | MEDLINE | ID: mdl-18989569

RESUMEN

We introduce some investigative approaches and findings on differential gene expression in human epileptic time as well as in animal models of epilepsy. Molecular alterations observed in the epileptic brain suggest that they may disclose different psychopathological stages. It is possible that different gene expression combinations involved in cell death, reactive oxygen metabolism, synaptic transmission and immune response and of neurotrophins reflect distinct functional properties of different neuronal and glial populations, which determine specific brain region responses. Understanding the molecular patterns of gene expression following epileptogenic insults will be of great importance for the development of treatments aiming to reduce neurotoxicity and subtle synaptic dyfunctions present in the early stages as well as during the chronic phase of epilepsy.


Asunto(s)
Química Encefálica/genética , Epilepsia/genética , Expresión Génica/genética , Animales , Modelos Animales de Enfermedad , Humanos , Ratas
10.
Rev. Assoc. Med. Bras. (1992, Impr.) ; Rev. Assoc. Med. Bras. (1992, Impr.);54(5): 461-466, set.-out. 2008. tab
Artículo en Portugués | LILACS | ID: lil-495909

RESUMEN

Nesta revisão, introduzimos abordagens investigativas, assim como discutimos os principais achados de expressão gênica diferencial em tecido epiléptico humano e em modelos experimentais. As alterações observadas no cérebro de indivíduos epilépticos sugerem que eventos moleculares específicos refletem diferentes expressões do quadro fisiopatológico. É possível que diferentes combinações da expressão de genes associados à morte celular, metabolismo de radicais livres, transmissão sináptica, resposta imune e de neurotrofinas reflitam propriedades características de diferentes populações neuronais e gliais, que determinam as distintas respostas de cada área cerebral. A compreensão dessas particularidades moleculares será muito importante para o desenvolvimento de uma estratégia de intervenção visando reduzir neurotoxicidade e disfunções sinápticas que ocorrem durante a epileptogênese e a fase crônica em pacientes epilépticos.


We introduce some investigative appnacher and findings on differential gene expression in human epileptic time as well as in animal models of epilepsy. Molecular alterations observed in the epileptic brain suggest that they may disclose different psychopathological stages. It is possible that different gene expression combinations involved in cell death, reactive oxygen metabolism, synaptic transmission and immune response and of neurotrophins reflect distinct functional properties of different neuronal and glial populations, which determine specific brain region responses. Understanding the molecular patterns of gene expression following epileptogenic insults will be of great importance for the development of treatments aiming to reduce neurotoxicity and subtle synaptic dyfunctions present in the early stages as well as during the chronic phase of epilepsy.


Asunto(s)
Animales , Humanos , Ratas , Química Encefálica/genética , Epilepsia/genética , Expresión Génica/genética , Modelos Animales de Enfermedad
11.
Rev Assoc Med Bras (1992) ; 54(3): 272-8, 2008.
Artículo en Portugués | MEDLINE | ID: mdl-18604408

RESUMEN

INTRODUCTION: Epilepsy is a neurological disorder characterized by spontaneous and recurrent seizures with an estimated prevalence of 2-3 % in the world population. Epileptic seizures are the result of paroxystic and hypersynchronous electrical activity, preferentially in cortical areas, caused by panoply of structural and neurochemical dysfunctions. Recent advances in the field have focused on the molecular mechanisms involved in the epileptogenic process. OBJECTIVES: In the present review, we describe the main genetic alterations associated to the process of epileptogenesis and discuss the new findings that are shedding light on the molecular substrates of monogenic idiopathic epilepsies (MIE) and on genetically complex epilepsies (GCE). RESULTS AND CONCLUSION: Linkage and association studies have shown that mutations in ion channel genes are the main causes of MIE and of predisposition for GCE. Moreover, mutations in genes involved in neuronal migration, glycogen metabolism and respiratory chain are associated to other syndromes involving seizures. Therefore, different gene classes contribute to the epileptic trait. The identification of epilepsy-related gene families can help us understand the molecular mechanisms of neuronal hyperexcitability and recognize markers of early diagnosis as well as new treatments for these epilepsies.


Asunto(s)
Epilepsia/genética , Mutación , Polimorfismo de Nucleótido Simple/genética , Glucógeno/metabolismo , Humanos , Canales Iónicos/genética
12.
Rev. Assoc. Med. Bras. (1992, Impr.) ; Rev. Assoc. Med. Bras. (1992, Impr.);54(3): 272-278, maio-jun. 2008. tab
Artículo en Portugués | LILACS | ID: lil-485613

RESUMEN

INTRODUÇÃO: Epilepsia é uma desordem neurológica caracterizada por crises espontâneas e recorrentes, que afeta de 2 por cento a 3 por cento da população mundial. As crises epilépticas refletem atividade elétrica anormal e paroxística, preferencialmente em uma ou várias áreas do córtex cerebral, que podem ser causadas por inúmeras patologias estruturais ou neuroquímicas. Dentre os importantes estudos das últimas décadas no campo da epileptologia, destaca-se a identificação de genes associados a certos tipos de epilepsia. OBJETIVO: Nesta revisão, descrevemos as principais alterações genéticas associadas ao processo epileptogênico, discutindo as mais recentes descobertas e suas contribuições para a compreensão das bases genéticas das epilepsias idiopáticas monogênicas (EIM) e das epilepsias geneticamente complexas. RESULTADOS E CONCLUSÃO: Estudos de ligação e associação mostram que alterações em genes que codificam canais iônicos são as principais causas genéticas das epilepsias idiopáticas monogênicas e de predisposição nas epilepsias geneticamente complexas. Além disso, as síndromes nas quais a epilepsia é um aspecto importante do quadro clínico podem ser provocadas por genes envolvidos em diferentes vias celulares, tais como: migração neuronal, metabolismo de glicogênio e cadeia respiratória. Portanto, acredita-se que diferentes categorias de genes possam atuar na determinação do traço epiléptico. A identificação de tais famílias de genes não apenas nos ajudará a entender as vias moleculares associadas à hiperexcitabilidade neuronal e ao processo epileptogênico, mas também poderá conduzir ao desenvolvimento de novas e mais precisas estratégias de tratamento da epilepsia.


INTRODUCTION: Epilepsy is a neurological disorder characterized by spontaneous and recurrent seizures with an estimated prevalence of 2-3 percent in the world population. Epileptic seizures are the result of paroxystic and hypersynchronous electrical activity, preferentially in cortical areas, caused by panoply of structural and neurochemical dysfunctions. Recent advances in the field have focused on the molecular mechanisms involved in the epileptogenic process. OBJECTIVES: In the present review, we describe the main genetic alterations associated to the process of epileptogenesis and discuss the new findings that are shedding light on the molecular substrates of monogenic idiopathic epilepsies (MIE) and on genetically complex epilepsies (GCE). RESULTS AND CONCLUSION: Linkage and association studies have shown that mutations in ion channel genes are the main causes of MIE and of predisposition for GCE. Moreover, mutations in genes involved in neuronal migration, glycogen metabolism and respiratory chain are associated to other syndromes involving seizures. Therefore, different gene classes contribute to the epileptic trait. The identification of epilepsy-related gene families can help us understand the molecular mechanisms of neuronal hyperexcitability and recognize markers of early diagnosis as well as new treatments for these epilepsies.


Asunto(s)
Humanos , Epilepsia/genética , Mutación , Polimorfismo de Nucleótido Simple/genética , Glucógeno/metabolismo , Canales Iónicos/genética
13.
J Neurosci Methods ; 167(2): 384-92, 2008 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-17935790

RESUMEN

In many experimental designs, animal observation is associated with local field potential (LFP) recordings in order to find correlations between behavior dynamics and neuronal activity. In such cases, relevant behaviors can occur at different times during free-running recordings and should be put together by the time of analysis. Here, we developed a MATLAB semi-automated toolbox to quantitatively analyze the temporal progression of brain oscillatory activity in multiple free-running LFP recordings obtained during spontaneous behaviors. The algorithm works by selecting LFP epochs at user-defined onset times (locked to behavior, drug injection time, etc.), calculates their time-frequency spectra, detects long-lasting oscillatory events and calculates linear coherence between pair of electrodes. As output, it generates several table-like text and tiff image files, besides group descriptive statistics. To test the algorithm, we recorded hippocampus and amygdala LFPs from rats in different behavioral states: awake (AW), sleep (SWS, slow-wave sleep and REMS, rapid-eye movement sleep) and tonic-clonic seizures. The results show that the software reliably detects all oscillatory events present in up to seven user-defined frequency bands including onset/offset time and duration. It also calculates the global spectral composition per epoch from each subject and the linear coherence (with confidence intervals) as a measure of spectral synchronization between brain regions. The output files provide an easy way to do within-subject as well as across-subject analysis. The routines will be freely available for downloading from our website http://www.neuroimago.usp.br/BPT/.


Asunto(s)
Algoritmos , Electroencefalografía , Neuronas/fisiología , Reconocimiento de Normas Patrones Automatizadas , Animales , Encéfalo/citología , Electrofisiología , Masculino , Modelos Neurológicos , Ratas , Ratas Wistar , Factores de Tiempo
14.
J. epilepsy clin. neurophysiol ; 13(3): 119-123, Sept. 2007.
Artículo en Portugués | LILACS | ID: lil-471128

RESUMEN

INTRODUÇÃO: Relatos sobre a possibilidade de neurogênese no cérebro de mamíferos adultos existem desde o início do século XX. A dificuldade na verificação de tal evento, somada à firme convicção da maioria dos pesquisadores da época sobre a impossibilidade do nascimento de neurônios no sistema nervoso adulto, resultou em expressiva demora no avanço do conhecimento nesta área. O desenvolvimento de técnicas refinadas de estudo celular e a observação comprovada de neurogênese no cérebro de vertebrados adultos como o de pássaros canoros e roedores, serviu como importante alavanca para a desmistificação da impossibilidade de nascimento de neurônios no cérebro adulto. RESULTADOS: A descoberta da neurogênese em áreas específicas do cérebro adulto tem fomentado avanços em diversas áreas da pesquisa médica. No contexto de alterações neurológicas temos a constatação de neurogênese reativa no hipocampo de modelos animais de epilepsia do lobo temporal, logo após um episódio de estado de mal epiléptico. Diferenças filogenéticas entre roedores e humanos provavelmente existem, visto que há evidências de diminuição da neurogênese em crianças com epilepsia grave. A neurogênese pode estar também alterada frente ao uso de drogas, como parece ocorrer no tratamento com antidepressivos. CONCLUSÃO: O entendimento cada vez maior da neurogênese no cérebro adulto pode significar uma revolução no conceito da plasticidade do cérebro de um mamífero adulto, além de ter grande importância para o desenvolvimento de estratégias terapêuticas no tratamento de doenças neurodegenerativas e na possibilidade de promover a recuperação funcional de áreas lesadas do sistema nervoso central.


INTRODUCTION: Since the early XX century, there have been numerous reports considering the possibility of neurogenesis in the adult mammalian brain. However, it took 30 years before the widespread skepticism and the technical limitations were overcome. Refined cell technique developments and clear-cut evidences of neurogenesis in avian and rodent brains boosted additional research and counteracted the "no-new-neuron-in-the-adult-brain" myth. Now, the debate has focused on its importance to existing neural circuits, which promises interesting perspectives in medical research. RESULTS: Reactive neurogenesis in the hippocampus occurs in different experimental models of temporal lobe epilepsy, among them those that present spontaneous limbic seizures after an episode of status epilepticus. Phylogenetic differences between rodents and humans probably exist, since it has been described a reduction of neurogenesis in children with severe epilepsy. Neurogenesis may also be altered in many other conditions including chronic antidepressant drug treatment. CONCLUSION: Therefore, understanding the mechanisms and functional implications of adult neurogenesis in different brain regions can shed light into how such neuronal plasticity can help in the treatment of neurological disorders. In particular, cell therapy is a promising approach in the biomedical field that will possibly have great impact in the treatment of neurodegenerative diseases, as well as in the functional recovery of brain injuries.


Asunto(s)
Humanos , Animales , Epilepsia , Neurogénesis , Plasticidad Neuronal , Enfermedades Neurodegenerativas , Modelos Animales , Cerebro/lesiones
15.
An Acad Bras Cienc ; 74(2): 285-95, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12098754

RESUMEN

The roughest-irregular chiasm C ( rst-irreC) gene of Drosophila melanogaster encodes a transmembrane glycoprotein containing five immunoglobulin-like domains in its extracellular portion and an intracytoplasmic tail rich in serine and threonine as well some conserved motifs suggesting signal transduction activity. In the compound eye, loss-of-function rst-irreC mutants lack the characteristic wave of programmed cell death happening in early pupa and which is essential for the elimination of the surplus interommatidial cells. Here we report an investigation on the role played by the Rst-irreC molecule in triggering programmed cell death. "In vivo" transient expression assays showed that deletion of the last 80 amino acids of the carboxyl terminus produces a form of the protein that is highly toxic to larvae. This toxicity is suppressed if an additional 47 amino acid long, glutamine-rich region ("opa-like domain"), is also removed from the protein. The results suggest the possibility that the opa-like domain and the carboxyl terminus act in concert to modulate rst-irreC function in apoptosis, and we discuss this implication in the context of the general mechanisms causing glutamine-rich neurodegenerative diseases in humans.


Asunto(s)
Apoptosis/fisiología , Moléculas de Adhesión Celular Neuronal/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Proteínas del Ojo , Glutamina/química , Proteínas de Insectos/fisiología , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión Celular Neuronal/genética , Muerte Celular , Drosophila/efectos de los fármacos , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Femenino , Proteínas de Insectos/química , Proteínas de Insectos/genética , Larva/efectos de los fármacos , Plásmidos
16.
An. acad. bras. ciênc ; 74(2): 285-295, June 2002. graf
Artículo en Inglés | LILACS | ID: lil-314021

RESUMEN

The roughest-irregular chiasm C ( rst-irreC) gene of Drosophila melanogaster encodes a transmembrane glycoprotein containing five immunoglobulin-like domains in its extracellular portion and an intracytoplasmic tail rich in serine and threonine as well some conserved motifs suggesting signal transduction activity. In the compound eye, loss-of-function rst-irreC mutants lack the characteristic wave of programmed cell death happening in early pupa and which is essential for the elimination of the surplus interommatidial cells. Here we report an investigation on the role played by the Rst-irreC molecule in triggering programmed cell death. "In vivo" transient expression assays showed that deletion of the last 80 amino acids of the carboxyl terminus produces a form of the protein that is highly toxic to larvae. This toxicity is suppressed if an additional 47 amino acid long, glutamine-rich region ("opa-like domain"), is also removed from the protein. The results suggest the possibility that the opa-like domain and the carboxyl terminus act in concert to modulate rst-irreC function in apoptosis, and we discuss this implication in the context of the general mechanisms causing glutamine-rich neurodegenerative diseases in humans


Asunto(s)
Animales , Femenino , Drosophila , Proteínas de Drosophila/toxicidad , Glutamina , Aminoácidos , Muerte Celular , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Larva
17.
Medicina (Ribeiräo Preto) ; Medicina (Ribeirao Preto, Online);32(2): 167-88, abr.-jun. 1999. ilus, tab
Artículo en Portugués | LILACS | ID: lil-272867

RESUMEN

O Sistema Nervoso Central produz o nosso estado consciente mediante um contínuo fluxo de informaçöes e armazenamento de memórias ao longo da vida, a partir de diferentes estímulos externos. Ao mesmo tempo, controla a concentraçäo dos nossos fluidos internos e o trabalho de músculos e glândulas. A transmissäo sináptica é o processo básico de toda esta atividade. Bilhöes de neurônios se comunicam entre si via milhares de sinapses, e cada sinapse, por sua vez, é uma estrutura regulada independentemente. A partir desta complexidade, em lugar de caos, surge uma singular ordem na informaçäo processada pelo cérebro. A secreçäo de neurotransmissores na zona ativa da sinapse é o evento primário da comunicaçäo interneuronal. Este processo é regulado por um tráfego de membranas altamente orquestrado dentro do terminal pré-sináptico. Os neurotransmissores säo armazenados em vesículas sinápticas. A despolarizaçäo de um terminal nervoso por um potencial de açäo resulta na abertura de canais de cálcio, operados por voltagem. O influxo do Ca²+ resultante deflagra a exocitose, que é uma rápida fusäo de vesículas com a membrana plasmática, liberando neurotransmissores para a fenda sináptica. A exocitose envolve a junçäo de proteínas intrínsecas das membranas plasmáticas, vesicular e pré-sináptica, mediante proteínas específicas de ancoragem e fusäo na zona ativa (SNARE). Em seguida à liberaçäo, as membranas das vesículas säo rapidamente reincorporadas via endocitose e recicladas dentro do terminal sináptico. O terminal é, portanto, uma unidade autônoma que contém todos os elementos requeridos para a exocitose das vesículas, as proteínas responsáveis pela biossíntese do neurotransmissor e recaptaçäo das vesículas. Uma vez liberado, o neurotransmissor difunde através da fenda sináptica e interage com proteínas receptoras na membrana do neurônio pós-sináptico produzindo, em uma fraçäo de milissegundo, uma permeabilidade intensa e temporária aos íons Na+ e K+, provocando a despolarizaçäo total de cerca de 100 mV desde um potencial de repouso em torno de -60mV. Isto gera um potencial de açäo que se difunde ao longo da membrana do neurônio pós-sináptico, podendo alcançar o seu próprio terminal e deflagrar novo movimento de Ca²+ para o citosol, gerando um novo potencial. Várias proteínas dentro do terminal pós-sináptico estäo envolvidas neste processo.


Asunto(s)
Humanos , Animales , Sinapsis , Vesículas Sinápticas , Potenciación a Largo Plazo , Proteínas , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA