Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38814363

RESUMEN

Scanning Thermal Microscopy (SThM) has become an important measurement technique for characterizing the thermal properties of materials at the nanometer scale. This technique requires a SThM probe that combines an Atomic Force Microscopy (AFM) probe and a very sensitive resistive thermometer; the thermometer being located at the apex of the probe tip allows for the mapping of temperature or thermal properties of nanostructured materials with very high spatial resolution. The high interest of the SThM technique in the field of thermal nanoscience currently suffers from a low temperature sensitivity despite its high spatial resolution. To address this challenge, we developed a high vacuum-based AFM system hosting a highly sensitive niobium nitride (NbN) SThM probe to demonstrate its unique performance. As a proof of concept, we utilized this custom-built system to carry out thermal measurements using the 3ω method. By measuring the V3ω voltage on the NbN resistive thermometer under vacuum conditions, we were able to determine the SThM probe's thermal conductance and thermal time constant. The performance of the probe is demonstrated by performing thermal measurements in-contact with a sapphire sample.

2.
Phys Chem Chem Phys ; 25(4): 3298-3308, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36629555

RESUMEN

Understandings heat transfer across a solid/liquid interface is crucial for establishing novel thermal control pathways in a range of energy applications. One of the major problems raised in this context is the impact of the three-phase contact line between solid, liquid, and gas on heat flux perturbations at the nanoscale. The focus of this research is the thermal transport via nanosized meniscus restricted between two solid walls. The molecular dynamics approach was used to consider different wetting states of the meniscus by varying the interaction potential between atoms of the substrate and the liquid. The influence of the meniscus size on the energy exchange between two solid walls was also studied. It was discovered that possessing a three-phase contact line reduces the interfacial boundary resistance between solid and liquid. Furthermore, the finite element method was employed to connect atomistic simulations with continuum mechanics. We show that the wetting angle and interfacial boundary resistance are essential important parameters for multiscale analysis of thermal engineering issues with precise microscale parametrization.

3.
Rev Sci Instrum ; 85(6): 064904, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24985839

RESUMEN

GigaHertz (GHz) thermoreflectance technique is developed to measure the transient temperature of metal and semiconductor materials located behind an opaque surface. The principle is based on the synchronous detection, using a commercial THz pyrometer, of a modulated millimeter wave (at 110 GHz) reflected by the sample hidden behind a shield layer. Measurements were performed on aluminum, copper, and silicon bulks hidden by a 5 cm thick Teflon plate. We report the first measurement of the thermoreflectance coefficient which exhibits a value 100 times higher at 2.8 mm radiation than those measured at visible wavelengths for both metallic and semiconductor materials. This giant thermoreflectance coefficient κ, close to 10(-3) K(-1) versus 10(-5) K(-1) for the visible domain, is very promising for future thermoreflectance applications.

4.
Nat Mater ; 9(6): 491-5, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20436465

RESUMEN

The ability to precisely control the thermal conductivity (kappa) of a material is fundamental in the development of on-chip heat management or energy conversion applications. Nanostructuring permits a marked reduction of kappa of single-crystalline materials, as recently demonstrated for silicon nanowires. However, silicon-based nanostructured materials with extremely low kappa are not limited to nanowires. By engineering a set of individual phonon-scattering nanodot barriers we have accurately tailored the thermal conductivity of a single-crystalline SiGe material in spatially defined regions as short as approximately 15 nm. Single-barrier thermal resistances between 2 and 4 x 10(-9) m(2) K W(-1) were attained, resulting in a room-temperature kappa down to about 0.9 W m(-1) K(-1), in multilayered structures with as little as five barriers. Such low thermal conductivity is compatible with a totally diffuse mismatch model for the barriers, and it is well below the amorphous limit. The results are in agreement with atomistic Green's function simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...