Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Infect Immun ; 85(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28052994

RESUMEN

Infection by Leishmania (Viannia) panamensis, the predominant etiologic agent for cutaneous leishmaniasis in Colombia, is characterized by a chronic mixed inflammatory response. Current treatment options are plagued by toxicity, lengthy treatment regimens, and growing evidence of drug resistance. Immunotherapy, modulating the immune system to mount a protective response, may provide an alternate therapeutic approach. We investigated the ability of the Toll-like receptor 9 (TLR9) ligand CpG to modulate established disease in the L (V) panamensis mouse model. Treatment of established infection with a high dose (50 µg) of CpG ameliorated disease and lowered parasite burden. Interestingly, immediately after treatment there was a significant increase in transforming growth factor ß (TGF-ß) and concomitantly an increase in T regulatory cell (Treg) function. Although a general reduction in cell-mediated immune cytokine and chemokine (gamma interferon [IFN-γ], interleukin 10 [IL-10], IL-13, IL-6, granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-4, and MIP-1α) responses of the treated mice was observed, certain chemokines (RANTES, monocyte chemoattractant protein 1[MCP-1], and IP-10) were increased. Further, in peripheral blood mononuclear cells (PBMCs) from patients with cutaneous leishmaniasis, CpG treatment similarly exhibited a dose-response effect on the production of IFN-γ, IL-17, IL-10, and IL-13, with reductions observed at higher doses. To further understand the underlying mechanisms and cell populations driving the CpG mediated response, we examined the ex vivo dose effects mediated by the TLR9+ cell populations (dendritic cells, macrophages, and B cells) found to accumulate labeled CpG in vivo Notably, B cells altered the production of IL-17, IL-13, and IFN-γ, supporting a role for B cells functioning as antigen-presenting cells (APCs) and/or regulatory cells during infection. Interestingly, B cells have been previously demonstrated as a primary type of APC in patients infected with L (V) panamensis and thus may be useful targets of immunotherapy. Collectively, our results show that CpG-induced immune regulation leads to a dampening of the host immune response and healing in the mouse model, and it may provide an alternate approach to treatment of cutaneous leishmaniasis caused by L (V) panamensis.


Asunto(s)
Leishmania guyanensis/inmunología , Leishmaniasis Mucocutánea/inmunología , Leishmaniasis Mucocutánea/metabolismo , Oligodesoxirribonucleótidos/metabolismo , Receptor Toll-Like 9/metabolismo , Adulto , Animales , Enfermedad Crónica , Citocinas/metabolismo , Femenino , Humanos , Inmunomodulación , Leishmaniasis Mucocutánea/parasitología , Leishmaniasis Mucocutánea/patología , Ligandos , Masculino , Ratones , Persona de Mediana Edad , Carga de Parásitos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Adulto Joven
2.
Biomaterials ; 108: 168-76, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27636154

RESUMEN

Leishmania (Viannia) panamensis (L. (V.) panamensis) is a species of protozoan parasites that causes New World leishmaniasis, which is characterized by a hyper-inflammatory response. Current treatment strategies, mainly chemotherapeutic, are suboptimal due to adverse effects, long treatment regimens, and increasing drug resistance. Recently, immunotherapeutic approaches have shown promise in preclinical studies of leishmaniasis. As NPs may enable broad cellular immunomodulation through internalization in phagocytic and antigen-presenting cells, we tested the therapeutic efficacy of biodegradable NPs encapsulating a pathogen-associated molecular pattern (PAMP), CpG-rich oligonucleotide (CpG; NP-CpG), in mice infected with L. (V.) panamensis. NP-CpG treatment reduced lesion size and parasite burden, while neither free CpG nor empty NP showed therapeutic effects. NP-encapsulation led to CpG persistence at the site of infection along with an unexpected preferential cellular uptake by myeloid derived suppressor cells (MDSCs; CD11b(+)Ly6G(+)Ly6C(-)) as well as CD19(+) dendritic cells. This corresponded with the suppression of the ongoing immune response measured by the reduction of pathogenic cytokines IL-10 and IL-13, as well as IL-17 and IFNγ, in comparison to other treatment groups. As chronic inflammation is generally associated with the accumulation of MDSCs, this study may enable the rational design of cost-effective, safe, and scalable delivery systems for the treatment of inflammation-mediated diseases.


Asunto(s)
Citocinas/inmunología , Preparaciones de Acción Retardada/administración & dosificación , Factores Inmunológicos/administración & dosificación , Leishmaniasis/inmunología , Leishmaniasis/terapia , Nanopartículas/administración & dosificación , Animales , Preparaciones de Acción Retardada/química , Femenino , Factores Inmunológicos/química , Leishmania , Leishmaniasis/parasitología , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Nanopartículas/ultraestructura , Resultado del Tratamiento
3.
Vector Borne Zoonotic Dis ; 15(3): 202-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25793476

RESUMEN

Leishmaniasis is a serious problem that affects mostly poor countries. Various species of Leishmania are the agents of the disease, which take different clinical manifestations. The parasite is transmitted by sandflies, predominantly from the Phlebotomus genus in the Old World and Lutzomyia in the New World. During development in the gut, Leishmania must survive various challenges, which include avoiding being expelled with blood remnants after digestion. It is believed that attachment to the gut epithelium is a necessary step for vector infection, and molecules from parasites and sand flies have been implicated in this attachment. In previous work, monoclonal antibodies were produced against Leishmania. Among these an antibody was obtained against Leishmania braziliensis flagella, which blocked the attachment of Leishmania panamensis flagella to Phlebotomus papatasi guts. The protein recognized by this antibody was identified and named FLAG1, and the complete FLAG1 gene sequence was obtained. This protein was later independently identified as a small, myristoylated protein and called SMP1, so from now on it will be denominated FLAG1/SMP1. The FLAG1/SMP1 gene is expressed in all developmental stages of the parasite, but has higher expression in promastigotes. The anti-FLAG1/SMP1 antibody recognized the flagellum of all Leishmania species tested and generated the expected band by western blots. This antibody was used in attachment and infection blocking experiments. Using the New World vector Lutzomyia longipalpis and Leishmania infantum chagasi, no inhibition of attachment ex vivo or infection in vivo was seen. On the other hand, when the Old World vectors P. papatasi and Leishmania major were used, a significant decrease of both attachment and infection were seen in the presence of the antibody. We propose that FLAG1/SMP1 is involved in the attachment/infection of Leishmania in the strict vector P. papatasi and not the permissive vector L. longipalpis.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Leishmania/fisiología , Proteínas Protozoarias/metabolismo , Psychodidae/parasitología , Secuencia de Aminoácidos , Animales , Western Blotting , Técnica del Anticuerpo Fluorescente , Interacciones Huésped-Parásitos , Leishmania/genética , Leishmania/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas Protozoarias/genética
4.
J Immunol ; 193(6): 2961-70, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25098291

RESUMEN

Leishmania (Viannia) parasites are etiological agents of cutaneous leishmaniasis in the New World. Infection is characterized by a mixed Th1/Th2 inflammatory response, which contributes to disease pathology. However, the role of regulatory T cells (Tregs) in Leishmania (Viannia) disease pathogenesis is unclear. Using the mouse model of chronic L. (V.) panamensis infection, we examined the hypothesis that Treg functionality contributes to control of pathogenesis. Upon infection, Tregs (CD4(+)Foxp3(+)) presented with a dysregulated phenotype, in that they produced IFN-γ, expressed Tbet, and had a reduced ability to suppress T cell proliferation in vitro. Targeted ablation of Tregs resulted in enlarged lesions, increased parasite load, and enhanced production of IL-17 and IFN-γ, with no change in IL-10 and IL-13 levels. This indicated that an increased inflammatory response was commensurate with disease exacerbation and that the remaining impaired Tregs were important in regulation of disease pathology. Conversely, adoptive transfer of Tregs from naive mice halted disease progression, lowered parasite burden, and reduced cytokine production (IL-10, IL-13, IL-17, IFN-γ). Because Tregs appeared to be important for controlling infection, we hypothesized that their expansion could be used as an immunotherapeutic treatment approach. As a proof of principle, chronically infected mice were treated with rIL-2/anti-IL-2 Ab complex to expand Tregs. Treatment transitorily increased the numbers and percentage of Tregs (draining lymph node, spleen), which resulted in reduced cytokine responses, ameliorated lesions, and reduced parasite load (10(5)-fold). Thus, immunotherapy targeting Tregs could provide an alternate treatment strategy for leishmaniasis caused by Leishmania (Viannia) parasites.


Asunto(s)
Inmunoterapia Adoptiva , Leishmania guyanensis/inmunología , Leishmaniasis Mucocutánea/inmunología , Leishmaniasis Mucocutánea/terapia , Linfocitos T Reguladores/inmunología , Animales , Anticuerpos/inmunología , Anticuerpos/uso terapéutico , Complejo Antígeno-Anticuerpo/uso terapéutico , Proliferación Celular , Femenino , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Inflamación/inmunología , Interferón gamma/biosíntesis , Interleucina-10/biosíntesis , Interleucina-13/biosíntesis , Interleucina-17/biosíntesis , Interleucina-2/inmunología , Interleucina-2/uso terapéutico , Leishmaniasis Mucocutánea/parasitología , Recuento de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Carga de Parásitos , Linfocitos T Reguladores/trasplante , Factor de Crecimiento Transformador beta/biosíntesis
5.
Eur J Immunol ; 40(10): 2816-29, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20827674

RESUMEN

Leishmania (Viannia) organisms are the most prevalent etiologic agents of human cutaneous leishmaniasis in the Americas. Nevertheless, our knowledge of the immunological mechanisms exploited by L. (Viannia) organisms remains limited and the mechanisms underlying disease are not well understood. Here, we report the development of a BALB/c mouse model of L. (V.) panamensis infection that is able to reproduce chronic disease, with persistent infection and clinically evident lesions for over 1 year. The immune response of the mouse resembles that found for L. (V.) panamensis-infected patients with chronic and recurrent lesions, presenting a mixed Th1/Th2 response with the presence of TNF-α, IFN-γ, IL-10 and IL-13. Using immunodeficient mice, the critical role for IL-13 and/or IL-4Rα in determining susceptibility to chronic infection was evident. With the induction of healing in the immunodeficient mice, increases in IFN-γ and IL-17 were found, concomitant with parasite control and elimination. Specifically, increases in CD4(+) (but not CD8(+)) T cells producing IFN-γ were observed. These results suggest that IL-13 represents an important target for disease control of L. (V.) panamensis infection. This murine model should be useful to further understand the pathology associated with chronic disease and to develop methods for the treatment and prevention of leishmaniasis caused by L. (Viannia) parasites.


Asunto(s)
Leishmania/inmunología , Leishmaniasis Cutánea/inmunología , Células TH1/inmunología , Células Th2/inmunología , Adolescente , Adulto , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Interferón gamma/inmunología , Interleucina-13/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Persona de Mediana Edad , Receptores de Interleucina-4/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA