Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Methods ; 18(1): 16, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35135559

RESUMEN

BACKGROUND: Neutral density shade cloth is commonly used for simulating foliar shade, in which it reduces light intensity without altering spectral quality. However, foliar shade also alters spectral quality, reducing the ratio of red to far-red (R:FR) light, altering the ratio of blue to green (B:G) light, and reducing ultraviolet light. Unlike shade cloth, photoselective filters can alter spectral quality, but the filters used in previous literature have not simulated foliar shade well. We examined the spectral quality of sunlight under color temperature blue (CTB), plus green (PG), and neutral density (ND) filters from LEE Filters, Rosco e-colour + and Cinegel brands either alone or layered, hypothesizing that the contrasting filter qualities would improve simulations. As a proof-of-concept, we collected spectral data under foliar shade to compare to data collected under photoselective filters. RESULTS: Under foliar shade reductions in the R:FR ratio ranged from 0.11 to 0.54 (~ 1.18 in full sun), while reductions in the B:G ratio were as low as 0.53 in deep shade, or were as high as 1.11 in moderate shade (~ 0.87 in full sun). Neutral density filters led to near-neutral reductions in photosynthetically active radiation and reduced the R:FR ratio similar to foliar shade. Color temperature blue filters simulated the increased B:G ratio observed under moderate foliar shade, but did not reduce the R:FR ratio low enough. On their own, PG filters did not simulate any type of foliar shade. Different brands of the same filter type also had disparate effects on spectral quality. Layered CTB and ND filters improved the accuracy of moderate foliar shade simulations, and layering CTB, PG, and ND filters led to accurate simulations of deep foliar shade. CONCLUSIONS: Layering photoselective filters with contrasting effects on the spectral quality of sunlight results in more accurate simulations of foliar shade compared to when these filters are used separately. Layered filters can re-create the spectral motifs of moderate and deep foliar shade; they could be used to simulate shade scenarios found in different cropping systems. Photoselective filters offer numerous advantages over neutral density shade cloth and could be a direct replacement for researchers currently using neutral density shade cloth.

2.
J Exp Bot ; 68(12): 3071-3089, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28899081

RESUMEN

Salt stress causes worldwide reductions in agricultural yields, a problem that is exacerbated by the depletion of global freshwater reserves and the use of contaminated or recycled water (i.e. effluent water). Additionally, salt stress can occur as cultivated areas are subjected to frequent rounds of irrigation followed by periods of moderate to severe evapotranspiration, which can result in the heterogeneous aggregation of salts in agricultural soils. Our understanding of the later stages of salt stress and the mechanisms by which salt is transported out of cells and roots has greatly improved over the last decade. The precise mechanisms by which plant roots perceive salt stress and translate this perception into adaptive, directional growth away from increased salt concentrations (i.e. halotropism), however, are not well understood. Here, we provide a review of the current knowledge surrounding the early responses to salt stress and the initiation of halotropism, including lipid signaling, protein phosphorylation cascades, and changes in auxin metabolism and/or transport. Current models of halotropism have focused on the role of PIN2- and PIN1-mediated auxin efflux in initiating and controlling halotropism. Recent studies, however, suggest that additional factors such as ABCB transporters, protein phosphatase 2A activity, and auxin metabolism should be included in the model of halotropic growth.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Metabolismo de los Lípidos , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo , Tolerancia a la Sal , Transducción de Señal , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA