Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurorobot ; 17: 1240933, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107403

RESUMEN

The human factor plays a key role in the automotive field since most accidents are due to drivers' unsafe and risky behaviors. The industry is now pursuing two main solutions to deal with this concern: in the short term, there is the development of systems monitoring drivers' psychophysical states, such as inattention and fatigue, and in the medium-long term, there is the development of fully autonomous driving. This second solution is promoted by recent technological progress in terms of Artificial Intelligence and sensing systems aimed at making vehicles more and more accurately aware of their "surroundings." However, even with an autonomous vehicle, the driver should be able to take control of the vehicle when needed, especially during the current transition from the lower (SAE < 3) to the highest level (SAE = 5) of autonomous driving. In this scenario, the vehicle has to be aware not only of its "surroundings" but also of the driver's psychophysical state, i.e., a user-centered Artificial Intelligence. The neurophysiological approach is one the most effective in detecting improper mental states. This is particularly true if considering that the more automatic the driving will be, the less available the vehicular data related to the driver's driving style. The present study aimed at employing a holistic approach, considering simultaneously several neurophysiological parameters, in particular, electroencephalographic, electrooculographic, photopletismographic, and electrodermal activity data to assess the driver's mental fatigue in real time and to detect the onset of fatigue increasing. This would ideally work as an information/trigger channel for the vehicle AI. In all, 26 professional drivers were engaged in a 45-min-lasting realistic driving task in simulated conditions, during which the previously listed biosignals were recorded. Behavioral (reaction times) and subjective measures were also collected to validate the experimental design and to support the neurophysiological results discussion. Results showed that the most sensitive and timely parameters were those related to brain activity. To a lesser extent, those related to ocular parameters were also sensitive to the onset of mental fatigue, but with a delayed effect. The other investigated parameters did not significantly change during the experimental session.

2.
Transp Policy (Oxf) ; 111: 197-215, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36568353

RESUMEN

The paper describes research activities of monitoring, modeling, and planning of people mobility in Rome during the Covid-19 epidemic period from March to June 2020. The results of data collection for different transport modes (walking, bicycle, car, and transit) are presented and analyzed. A specific focus is provided for the subway mass transit, where 1 m interpersonal distancing is required to prevent the risks for Covid-19 contagion together with the use of masks and gloves. A transport system model has been calibrated on the data collected during the lockdown period -when people's behavior significantly changed because of smart-working adoption and contagion fear- and was applied to predict future mobility scenarios under different assumptions on economic activities restarting. Based on the estimations of passenger loading, a timing policy that differentiates the opening hours of the shops depending on their commercial category was implemented, and an additional bus transit service was introduced to avoid incompatible loads of the subway lines with the required interpersonal distancing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...