Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 22248, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333284

RESUMEN

Processes determining the amount and spatial distribution of dissolved oxygen in the ocean have been a focus of intense research over the last two decades. Anomalies known as Oxygen Minimum Zones (OMZs) have been attracting growing attention, in particular because their growth is believed to be a result of the global environmental change. Comprehensive understanding of factors contributing to and/or controlling the emergence and evolution of OMZs is still lacking though. OMZs are usually thought to result from an interplay between the oxygen transport through the water column from the ocean surface and variable oxygen solubility at different water temperature. In this paper, we suggest a different, novel mechanism of the OMZ formation relating it to the oxygen production in phytoplankton photosynthesis in a stratified ocean. We consider a simple, conceptual model of the coupled phytoplankton-oxygen dynamics and show that the model predictions are in qualitative agreement with some relevant field observations.

2.
J Math Biol ; 89(1): 8, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801565

RESUMEN

Decline of the dissolved oxygen in the ocean is a growing concern, as it may eventually lead to global anoxia, an elevated mortality of marine fauna and even a mass extinction. Deoxygenation of the ocean often results in the formation of oxygen minimum zones (OMZ): large domains where the abundance of oxygen is much lower than that in the surrounding ocean environment. Factors and processes resulting in the OMZ formation remain controversial. We consider a conceptual model of coupled plankton-oxygen dynamics that, apart from the plankton growth and the oxygen production by phytoplankton, also accounts for the difference in the timescales for phyto- and zooplankton (making it a "slow-fast system") and for the implicit effect of upper trophic levels resulting in density dependent (nonlinear) zooplankton mortality. The model is investigated using a combination of analytical techniques and numerical simulations. The slow-fast system is decomposed into its slow and fast subsystems. The critical manifold of the slow-fast system and its stability is then studied by analyzing the bifurcation structure of the fast subsystem. We obtain the canard cycles of the slow-fast system for a range of parameter values. However, the system does not allow for persistent relaxation oscillations; instead, the blowup of the canard cycle results in plankton extinction and oxygen depletion. For the spatially explicit model, the earlier works in this direction did not take into account the density dependent mortality rate of the zooplankton, and thus could exhibit Turing pattern. However, the inclusion of the density dependent mortality into the system can lead to stationary Turing patterns. The dynamics of the system is then studied near the Turing bifurcation threshold. We further consider the effect of the self-movement of the zooplankton along with the turbulent mixing. We show that an initial non-uniform perturbation can lead to the formation of an OMZ, which then grows in size and spreads over space. For a sufficiently large timescale separation, the spread of the OMZ can result in global anoxia.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Oxígeno , Fitoplancton , Zooplancton , Animales , Oxígeno/metabolismo , Zooplancton/metabolismo , Zooplancton/crecimiento & desarrollo , Zooplancton/fisiología , Fitoplancton/metabolismo , Fitoplancton/crecimiento & desarrollo , Fitoplancton/fisiología , Océanos y Mares , Plancton/metabolismo , Plancton/crecimiento & desarrollo , Conceptos Matemáticos , Ecosistema , Agua de Mar/química , Cadena Alimentaria , Anaerobiosis
4.
Sci Rep ; 12(1): 20447, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443352

RESUMEN

Social protests, in particular in the form of street protests, are a frequent phenomenon of modern world often making a significant disruptive effect on the society. Understanding the factors that can affect their duration and intensity is therefore an important problem. In this paper, we consider a mathematical model of protests dynamics describing how the number of protesters change with time. We apply the model to two events such as the Yellow Vest Movement 2018-2019 in France and Khabarovsk protests 2019-2020 in Russia. We show that in both cases our model provides a good description of the protests dynamics. We consider how the model parameters can be estimated by solving the inverse problem based on the available data on protesters number at different time. The analysis of parameter sensitivity then allows for determining which factor(s) may have the strongest effect on the protests dynamics.


Asunto(s)
Biotina , Movimiento , Francia , Federación de Rusia
5.
Phys Life Rev ; 41: 22-57, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35523056

RESUMEN

Extinction of species, and even clades, is a normal part of the macroevolutionary process. However, several times in Earth history the rate of species and clade extinctions increased dramatically compared to the observed "background" extinction rate. Such episodes are global, short-lived, and associated with substantial environmental changes, especially to the carbon cycle. Consequently, these events are dubbed "mass extinctions" (MEs). Investigations surrounding the circumstances causing and/or contributing to mass extinctions are on-going, but consensus has not yet been reached, particularly as to common ME triggers or periodicities. In part this reflects the incomplete nature of the fossil and geologic record, which - although providing significant information about the taxa and paleoenvironmental context of MEs - is spatiotemporally discontinuous and preserved at relatively low resolution. Mathematical models provide an important opportunity to potentially compensate for missing linkages in data availability and resolution. Mathematical models may provide a means to connect ecosystem scale processes (i.e., the extinction of individual organisms) to global scale processes (i.e., extinction of whole species and clades). Such a view would substantially improve our understanding not only of how MEs precipitate, but also how biological and paleobiological sciences may inform each other. Here we provide suggestions for how to integrate mathematical models into ME research, starting with a change of focus from ME triggers to organismal kill mechanisms since these are much more standard across time and spatial scales. We conclude that the advantage of integrating mathematical models with standard geological, geochemical, and ecological methods is great and researchers should work towards better utilization of these methods in ME investigations.


Asunto(s)
Ecosistema , Extinción Biológica , Planeta Tierra , Fósiles , Modelos Teóricos
6.
Sci Rep ; 12(1): 2274, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145135

RESUMEN

Factors and processes determining heterogeneous ('patchy') population distributions in natural environments have long been a major focus in ecology. Existing theoretical approaches proved to be successful in explaining vegetation patterns. In the case of animal populations, existing theories are at most conceptual: they may suggest a qualitative explanation but largely fail to explain patchiness quantitatively. We aim to bridge this knowledge gap. We present a new mechanism of self-organized formation of a patchy spatial population distribution. A factor that was under-appreciated by pattern formation theories is animal sociability, which may result in density dependent movement behaviour. Our approach was inspired by a recent project on movement and distribution of slugs in arable fields. The project discovered a strongly heterogeneous slug distribution and a specific density dependent individual movement. In this paper, we bring these two findings together. We develop a model of density dependent animal movement to account for the switch in the movement behaviour when the local population density exceeds a certain threshold. The model is fully parameterized using the field data. We then show that the model produces spatial patterns with properties closely resembling those observed in the field, in particular to exhibit similar values of the aggregation index.

8.
Bull Math Biol ; 83(10): 107, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34482488

RESUMEN

As many ecosystems worldwide are in peril, efforts to manage them sustainably require scientific advice. While numerous researchers around the world use a great variety of models to understand ecological dynamics and their responses to disturbances, only a small fraction of these models are ever used to inform ecosystem management. There seems to be a perception that ecological models are not useful for management, even though mathematical models are indispensable in many other fields. We were curious about this mismatch, its roots, and potential ways to overcome it. We searched the literature on recommendations and best practices for how to make ecological models useful to the management of ecosystems and we searched for 'success stories' from the past. We selected and examined several cases where models were instrumental in ecosystem management. We documented their success and asked whether and to what extent they followed recommended best practices. We found that there is not a unique way to conduct a research project that is useful in management decisions. While research is more likely to have impact when conducted with many stakeholders involved and specific to a situation for which data are available, there are great examples of small groups or individuals conducting highly influential research even in the absence of detailed data. We put the question of modelling for ecosystem management into a socio-economic and national context and give our perspectives on how the discipline could move forward.


Asunto(s)
Ecosistema , Conceptos Matemáticos , Humanos , Modelos Teóricos
9.
Bull Math Biol ; 83(11): 110, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535836

RESUMEN

We consider the properties of a slow-fast prey-predator system in time and space. We first argue that the simplicity of the prey-predator system is apparent rather than real and there are still many of its hidden properties that have been poorly studied or overlooked altogether. We further focus on the case where, in the slow-fast system, the prey growth is affected by a weak Allee effect. We first consider this system in the non-spatial case and make its comprehensive study using a variety of mathematical techniques. In particular, we show that the interplay between the Allee effect and the existence of multiple timescales may lead to a regime shift where small-amplitude oscillations in the population abundances abruptly change to large-amplitude oscillations. We then consider the spatially explicit slow-fast prey-predator system and reveal the effect of different timescales on the pattern formation. We show that a decrease in the timescale ratio may lead to another regime shift where the spatiotemporal pattern becomes spatially correlated, leading to large-amplitude oscillations in spatially average population densities and potential species extinction.


Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Animales , Ecosistema , Conceptos Matemáticos , Modelos Biológicos , Dinámica Poblacional
10.
J R Soc Interface ; 18(180): 20210257, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34229460

RESUMEN

There is a growing recognition that ecological systems can spend extended periods of time far away from an asymptotic state, and that ecological understanding will therefore require a deeper appreciation for how long ecological transients arise. Recent work has defined classes of deterministic mechanisms that can lead to long transients. Given the ubiquity of stochasticity in ecological systems, a similar systematic treatment of transients that includes the influence of stochasticity is important. Stochasticity can of course promote the appearance of transient dynamics by preventing systems from settling permanently near their asymptotic state, but stochasticity also interacts with deterministic features to create qualitatively new dynamics. As such, stochasticity may shorten, extend or fundamentally change a system's transient dynamics. Here, we describe a general framework that is developing for understanding the range of possible outcomes when random processes impact the dynamics of ecological systems over realistic time scales. We emphasize that we can understand the ways in which stochasticity can either extend or reduce the lifetime of transients by studying the interactions between the stochastic and deterministic processes present, and we summarize both the current state of knowledge and avenues for future advances.


Asunto(s)
Ecosistema , Predicción , Humanos , Dinámica Poblacional , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA