Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 28(20): 4466-4478, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35653119

RESUMEN

PURPOSE: Propagation of Ewing sarcoma requires precise regulation of EWS::FLI1 transcriptional activity. Determining the mechanisms of fusion regulation will advance our understanding of tumor progression. Here we investigated whether HOXD13, a developmental transcription factor that promotes Ewing sarcoma metastatic phenotypes, influences EWS::FLI1 transcriptional activity. EXPERIMENTAL DESIGN: Existing tumor and cell line datasets were used to define EWS::FLI1 binding sites and transcriptional targets. Chromatin immunoprecipitation and CRISPR interference were employed to identify enhancers. CUT&RUN and RNA sequencing defined binding sites and transcriptional targets of HOXD13. Transcriptional states were investigated using bulk and single-cell transcriptomic data from cell lines, patient-derived xenografts, and patient tumors. Mesenchymal phenotypes were assessed by gene set enrichment, flow cytometry, and migration assays. RESULTS: We found that EWS::FLI1 creates a de novo GGAA microsatellite enhancer in a developmentally conserved regulatory region of the HOXD locus. Knockdown of HOXD13 led to widespread changes in expression of developmental gene programs and EWS::FLI1 targets. HOXD13 binding was enriched at established EWS::FLI1 binding sites where it influenced expression of EWS::FLI1-activated genes. More strikingly, HOXD13 bound and activated EWS::FLI1-repressed genes, leading to adoption of mesenchymal and migratory cell states that are normally suppressed by the fusion. Single-cell analysis confirmed that direct transcriptional antagonism between HOXD13-mediated gene activation and EWS::FLI1-dependent gene repression defines the state of Ewing sarcoma cells along a mesenchymal axis. CONCLUSIONS: Ewing sarcoma tumors are comprised of tumor cells that exist along a mesenchymal transcriptional continuum. The identity of cells along this continuum is, in large part, determined by the competing activities of EWS::FLI1 and HOXD13. See related commentary by Weiss and Bailey, p. 4360.


Asunto(s)
Sarcoma de Ewing , Línea Celular Tumoral , Plasticidad de la Célula , Inmunoprecipitación de Cromatina , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Cancers (Basel) ; 11(3)2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30845695

RESUMEN

Ewing sarcomas predominantly arise in pelvic and stylopod bones (i.e., femur and humerus), likely as a consequence of EWS-FLI1 oncogene-induced transformation of mesenchymal stem/progenitor cells (MSCs). MSCs located in the embryonic superficial zone cells (eSZ) of limbs express anatomically distinct posterior Hox genes. Significantly, high expression of posterior HOXD genes, especially HOXD13, is a hallmark of Ewing sarcoma. These data drove our hypothesis that Hox genes in posterior skeleton MSCs contribute to Ewing sarcoma tumorigenesis. We isolated eSZ cells from stylopod and zeugopod (i.e., tibia/fibula, radius/ulna) bones, from wild-type and Hoxd13 mutant embryos, and tested the impact of EWS-FLI1 transduction on cell proliferation, gene expression, and tumorigenicity. Our data demonstrate that both stylopod and zeugopod eSZ cells tolerate EWS-FLI1 but that stylopod eSZ cells are relatively more susceptible, demonstrating changes in proliferation and gene expression consistent with initiation of malignant transformation. Significantly, loss of Hoxd13 had no impact, showing that it is dispensable for the initiation of EWS-FLI1-induced transformation in mouse MSCs. These findings show that MSCs from anatomically distinct sites are differentially susceptible to EWS-FLI1-induced transformation, supporting the premise that the dominant presentation of Ewing sarcoma in pelvic and stylopod bones is attributable to anatomically-defined differences in MSCs.

3.
Mol Biol Cell ; 27(13): 1990-9, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27146114

RESUMEN

Microtubule (MT)-binding centromere protein F (CENP-F) was previously shown to play a role exclusively in chromosome segregation during cellular division. Many cell models of CENP-F depletion show a lag in the cell cycle and aneuploidy. Here, using our novel genetic deletion model, we show that CENP-F also regulates a broader range of cellular functions outside of cell division. We characterized CENP-F(+/+) and CENP-F(-/-) mouse embryonic fibroblasts (MEFs) and found drastic differences in multiple cellular functions during interphase, including cell migration, focal adhesion dynamics, and primary cilia formation. We discovered that CENP-F(-/-) MEFs have severely diminished MT dynamics, which underlies the phenotypes we describe. These data, combined with recent biochemical research demonstrating the strong binding of CENP-F to the MT network, support the conclusion that CENP-F is a powerful regulator of MT dynamics during interphase and affects heterogeneous cell functions.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Centrómero/metabolismo , Aberraciones Cromosómicas , Segregación Cromosómica , Fibroblastos , Interfase/genética , Cinetocoros/metabolismo , Ratones , Ratones Noqueados , Microtúbulos/fisiología , Mitosis/genética , Unión Proteica
5.
Dev Dyn ; 244(3): 410-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25546231

RESUMEN

Regional differences in vascular physiology and disease response exist throughout the vascular tree. While these differences in physiology and disease correspond to regional vascular environmental conditions, there is also compelling evidence that the embryonic origins of the smooth muscle inherent to the vessels may play a role. Here, we review what is known regarding the role of embryonic origin of vascular smooth muscle cells during vascular development. The focus of this review is to highlight the heterogeneity in the origins of vascular smooth muscle cells and the resulting regional physiologies of the vessels. Our goal is to stimulate future investigation into this area and provide a better understanding of vascular organogenesis and disease. .


Asunto(s)
Músculo Liso Vascular/embriología , Miocitos del Músculo Liso/metabolismo , Neovascularización Fisiológica , Organogénesis , Enfermedades Vasculares/embriología , Adulto , Animales , Humanos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Enfermedades Vasculares/patología
6.
J Vis Exp ; (91): e51109, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25225886

RESUMEN

Cardiomyocytes, the workhorse cell of the heart, contain exquisitely organized cytoskeletal and contractile elements that generate the contractile force used to pump blood. Individual cardiomyocytes were first isolated over 40 years ago in order to better study the physiology and structure of heart muscle. Techniques have rapidly improved to include enzymatic digestion via coronary perfusion. More recently, analyzing the contractility and calcium flux of isolated myocytes has provided a vital tool in the cellular and sub-cellular analysis of heart failure. Echocardiography and EKGs provide information about the heart at an organ level only. Cardiomyocyte cell culture systems exist, but cells lack physiologically essential structures such as organized sarcomeres and t-tubules required for myocyte function within the heart. In the protocol presented here, cardiomyocytes are isolated via Langendorff perfusion. The heart is removed from the mouse, mounted via the aorta to a cannula, perfused with digestion enzymes, and cells are introduced to increasing calcium concentrations. Edge and sarcomere detection software is used to analyze contractility, and a calcium binding fluorescent dye is used to visualize calcium transients of electrically paced cardiomyocytes; increasing understanding of the role cellular changes play in heart dysfunction. Traditionally used to test drug effects on cardiomyocytes, we employ this system to compare myocytes from WT mice and mice with a mutation that causes dilated cardiomyopathy. This protocol is unique in its comparison of live cells from mice with known heart function and known genetics. Many experimental conditions are reliably compared, including genetic or environmental manipulation, infection, drug treatment, and more. Beyond physiologic data, isolated cardiomyocytes are easily fixed and stained for cytoskeletal elements. Isolating cardiomyocytes via perfusion is an extremely versatile method, useful in studying cellular changes that accompany or lead to heart failure in a variety of experimental conditions.


Asunto(s)
Miocitos Cardíacos/fisiología , Animales , Calcio/metabolismo , Ratones , Contracción Miocárdica/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo
7.
Physiol Genomics ; 46(13): 457-66, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24790087

RESUMEN

Failure of the ductus arteriosus (DA) to close at birth can lead to serious complications. Conversely, certain profound congenital cardiac malformations require the DA to be patent until corrective surgery can be performed. In each instance, clinicians have a very limited repertoire of therapeutic options at their disposal - indomethacin or ibuprofen to close a patent DA (PDA) and prostaglandin E1 to maintain patency of the DA. Neither treatment is specific to the DA and both may have deleterious off-target effects. Therefore, more therapeutic options specifically targeted to the DA should be considered. We hypothesized the DA possesses a unique genetic signature that would set it apart from other vessels. A microarray was used to compare the genetic profiles of the murine DA and ascending aorta (AO). Over 4,000 genes were differentially expressed between these vessels including a subset of ion channel-related genes. Specifically, the alpha and beta subunits of large-conductance calcium-activated potassium (BKCa) channels are enriched in the DA. Gain- and loss-of-function studies showed inhibition of BKCa channels caused the DA to constrict, while activation caused DA relaxation even in the presence of O2. This study identifies subsets of genes that are enriched in the DA that may be used to develop DA-specific drugs. Ion channels that regulate DA tone, including BKCa channels, are promising targets. Specifically, BKCa channel agonists like NS1619 maintain DA patency even in the presence of O2 and may be clinically useful.


Asunto(s)
Conducto Arterial/metabolismo , Transcriptoma , Grado de Desobstrucción Vascular/genética , Animales , Conducto Arterioso Permeable/genética , Conducto Arterioso Permeable/metabolismo , Embrión de Mamíferos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Vasodilatación/genética
8.
J Mol Cell Cardiol ; 69: 88-96, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24508561

RESUMEN

Vascular smooth muscle cells (VSMCs) are derived from distinct embryonic origins. Vessels originating from differing smooth muscle cell populations have distinct vascular and pathological properties involving calcification, atherosclerosis, and structural defects such as aneurysm and coarctation. We hypothesized that domains within a single vessel, such as the aorta, vary in phenotype based on embryonic origin. Gene profiling and myographic analyses demonstrated that embryonic ascending and descending aortic domains exhibited distinct phenotypes. In vitro analyses demonstrated that VSMCs from each region were dissimilar in terms of cytoskeletal and migratory properties, and retention of different gene expression patterns. Using the same analysis, we found that these same two domains are indistinguishable in the adult vessel. Our data demonstrate that VSMCs from different embryonic origins are functionally distinct in the embryonic mouse, but converge to assume a common phenotype in the aorta of healthy adults. These findings have fundamental implications for aortic development, function and disease progression.


Asunto(s)
Aorta/embriología , Diferenciación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Variación Genética , Músculo Liso Vascular/embriología , Animales , Aorta/metabolismo , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Músculo Liso Vascular/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Mol Biol Cell ; 24(22): 3496-510, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24048452

RESUMEN

Directional cell movement is universally required for tissue morphogenesis. Although it is known that cell/matrix interactions are essential for directional movement in heart development, the mechanisms governing these interactions require elucidation. Here we demonstrate that a novel protein/protein interaction between blood vessel epicardial substance (Bves) and N-myc downstream regulated gene 4 (NDRG4) is critical for regulation of epicardial cell directional movement, as disruption of this interaction randomizes migratory patterns. Our studies show that Bves/NDRG4 interaction is required for trafficking of internalized fibronectin through the "autocrine extracellular matrix (ECM) deposition" fibronectin recycling pathway. Of importance, we demonstrate that Bves/NDRG4-mediated fibronectin recycling is indeed essential for epicardial cell directional movement, thus linking these two cell processes. Finally, total internal reflectance fluorescence microscopy shows that Bves/NDRG4 interaction is required for fusion of recycling endosomes with the basal cell surface, providing a molecular mechanism of motility substrate delivery that regulates cell directional movement. This is the first evidence of a molecular function for Bves and NDRG4 proteins within broader subcellular trafficking paradigms. These data identify novel regulators of a critical vesicle-docking step required for autocrine ECM deposition and explain how Bves facilitates cell-microenvironment interactions in the regulation of epicardial cell-directed movement.


Asunto(s)
Moléculas de Adhesión Celular/genética , Movimiento Celular/genética , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Musculares/genética , Proteínas del Tejido Nervioso/genética , Pericardio/metabolismo , Animales , Comunicación Autocrina , Células COS , Moléculas de Adhesión Celular/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Chlorocebus aethiops , Embrión de Mamíferos , Endosomas/metabolismo , Endosomas/ultraestructura , Matriz Extracelular/ultraestructura , Fibronectinas/genética , Fibronectinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Pericardio/citología , Cultivo Primario de Células , Transducción de Señal , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestructura
10.
PLoS One ; 8(7): e69712, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936085

RESUMEN

Mesothelia, which cover all coelomic organs and body cavities in vertebrates, perform diverse functions in embryonic and adult life. Yet, mesothelia are traditionally viewed as simple, uniform epithelia. Here we demonstrate distinct differences between visceral and parietal mesothelia, the most basic subdivision of this tissue type, in terms of gene expression, adhesion, migration, and invasion. Gene profiling determined that autotaxin, a secreted lysophospholipase D originally discovered as a tumor cell-motility-stimulating factor, was expressed exclusively in the more motile and invasive visceral mesothelia and at abnormally high levels in mesotheliomas. Gain and loss of function studies demonstrate that autotaxin signaling is indeed a critical factor responsible for phenotypic differences within mesothelia. Furthermore, we demonstrate that known and novel small molecule inhibitors of the autotaxin signaling pathway dramatically blunt migratory and invasive behaviors of aggressive mesotheliomas. Taken together, this study reveals distinct phenotypes within the mesothelial cell lineage, demonstrates that differential autotaxin expression is the molecular underpinning for these differences, and provides a novel target and lead compounds to intervene in invasive mesotheliomas.


Asunto(s)
Epitelio/metabolismo , Neoplasias Pulmonares/genética , Mesotelioma/genética , Neoplasias Peritoneales/genética , Hidrolasas Diéster Fosfóricas/genética , Pleura/metabolismo , Vísceras/metabolismo , Animales , Línea Celular Tumoral , Células Epiteliales/metabolismo , Células Epiteliales/patología , Epitelio/patología , Expresión Génica , Heterogeneidad Genética , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Mesotelioma/metabolismo , Mesotelioma/patología , Ratones , Ratones Transgénicos , Epiplón/metabolismo , Epiplón/patología , Neoplasias Peritoneales/metabolismo , Neoplasias Peritoneales/patología , Fenotipo , Hidrolasas Diéster Fosfóricas/metabolismo , Pleura/patología , Transducción de Señal , Vísceras/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA