Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 19(1): 134, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30971212

RESUMEN

BACKGROUND: Barley (Hordeum vulgare L.) is the fourth most important cereal crop worldwide. Barley production is compromised by many abiotic stresses including drought. Wild barley is a valuable source of alleles that can improve adaptation of cultivated barley to drought stress. RESULTS: In the present study, a nested association mapping population named HEB-25, consisting of 1420 BC1S3 lines that were developed by crossing 25 different wild barley accessions to the elite barley cultivar 'Barke', was evaluated under both control and drought-stressed conditions in the Australian Plant Phenomics Facility, University of Adelaide. Overall, 14 traits reflecting the performance of individual plants in each treatment were calculated from non-destructive imaging over time and destructive end-of-experiment measurements. For each trait, best linear unbiased estimators (BLUEs) were calculated and used for genome-wide association study (GWAS) analysis. Among the quantitative trait loci (QTL) identified for the 14 traits, many co-localise with known inflorescence and developmental genes. We identified a QTL on chromosome 4H where, under drought and control conditions, wild barley alleles increased biomass by 10 and 17% respectively compared to the Barke allele. CONCLUSIONS: Across all traits, QTL which increased phenotypic values were identified, providing a wider range of genetic diversity for the improvement of drought tolerance in barley.


Asunto(s)
Adaptación Fisiológica , Estudio de Asociación del Genoma Completo , Hordeum/genética , Sitios de Carácter Cuantitativo/genética , Alelos , Sequías , Hordeum/crecimiento & desarrollo , Hordeum/fisiología , Fenotipo , Estrés Fisiológico
2.
PLoS One ; 10(5): e0126753, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25993056

RESUMEN

Frogeye leaf spot (FLS), caused by the fungus Cercospora sojina K. Hara, may cause a significant yield loss to soybean growers in regions with a warm and humid climate. Two soybean accessions, PI 594891 and PI 594774, were identified to carry a high level of resistance similar to that conditioned by the Rcs3 gene in 'Davis'. Previously, we reported that the resistance to FLS in these two plant introductions (PIs) was controlled by a novel gene (s) on chromosome 13 that is different from Rcs3. To fine-map the novel FLS resistance gene(s) in these two PIs, F2: 3 seeds from the crosses between PI 594891 and PI 594774, and the FLS susceptible genotype 'Blackhawk' were genotyped with SNP markers that were designed based on the SoySNP50k iSelect BeadChip data to identify recombinant events and locate candidate genes. Analysis of lines possessing key recombination events helped narrow down the FLS-resistance genomic region in PI 594891 from 3.3 Mb to a 72.6 kb region with five annotated genes. The resistance gene in PI 594774 was fine-mapped into a 540 kb region that encompasses the 72.6 kb region found in PI 594891. Sequencing five candidate genes in PI 594891 identified three genes that have several mutations in the promoter, intron, 5', and 3' UTR regions. qPCR analysis showed a difference in expression levels of these genes in both lines compared to Blackhawk in the presence of C. sojina. Based on phenotype, genotype and haplotype analysis results, these two soybean accessions might carry different resistance alleles of the same gene or two different gene(s). The identified SNPs were used to develop Kompetitive Allele Specific PCR (KASP) assays to detect the resistance alleles on chromosome 13 from the two PIs for marker-assisted selection.


Asunto(s)
Ascomicetos/patogenicidad , Genes de Plantas , Glycine max/microbiología , Glycine max/genética
3.
Theor Appl Genet ; 126(7): 1825-38, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23568221

RESUMEN

Meloidogyne incognita (Kofoid and White) Chitwood (Mi) is the most economically damaging species of the root-knot nematode to soybean and other crops in the southern USA. PI 96354 was identified to carry a high level of resistance to galling and Mi egg production. Two Quantitative Trait Locus (QTLs) were found to condition the resistance in PI 96354 including a major QTL and a minor QTL on chromosome 10 and chromosome 18, respectively. To fine map the major QTL on chromosome 10, F5:6 recombinant inbred lines from the cross between PI 96354 and susceptible genotype Bossier were genotyped with Simple Sequence Repeats (SSR) markers to identify recombinational events. Analysis of lines carrying key recombination events placed the Mi-resistant allele on chromosome 10 to a 235-kb region of the 'Williams 82' genome sequence with 30 annotated genes. Candidate gene analysis identified four genes with cell wall modification function that have several mutations in promoter, exon, 5', and 3'UTR regions. qPCR analysis showed significant difference in expression levels of these four genes in Bossier compared to PI 96354 in the presence of Mi. Thirty Mi-resistant soybean lines were found to have same SNPs in these 4 candidate genes as PI 96354 while 12 Mi-susceptible lines possess the 'Bossier' genotype. The mutant SNPs were used to develop KASP assays to detect the resistant allele on chromosome 10. The four candidate genes identified in this study can be used in further studies to investigate the role of cell wall modification genes in conferring Mi resistance in PI 96354.


Asunto(s)
Resistencia a la Enfermedad/genética , Glycine max/genética , Sitios de Carácter Cuantitativo , Tylenchoidea/fisiología , Animales , Mapeo Cromosómico , Cromosomas de las Plantas , Marcadores Genéticos , Genotipo , Interacciones Huésped-Parásitos/genética , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Glycine max/parasitología
4.
Theor Appl Genet ; 125(3): 503-15, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22476873

RESUMEN

High oleic acid soybeans were produced by combining mutant FAD2-1A and FAD2-1B genes. Despite having a high oleic acid content, the linolenic acid content of these soybeans was in the range of 4-6 %, which may be high enough to cause oxidative instability of the oil. Therefore, a study was conducted to incorporate one or two mutant FAD3 genes into the high oleic acid background to further reduce the linolenic acid content. As a result, soybean lines with high oleic acid and low linolenic acid (HOLL) content were produced using different sources of mutant FAD2-1A genes. While oleic acid content of these HOLL lines was stable across two testing environments, the reduction of linolenic acid content varied depending on the number of mutant FAD3 genes combined with mutant FAD2-1 genes, on the severity of mutation in the FAD2-1A gene, and on the testing environment. Combination of two mutant FAD2-1 genes and one mutant FAD3 gene resulted in less than 2 % linolenic acid content in Portageville, Missouri (MO) while four mutant genes were needed to achieve the same linolenic acid in Columbia, MO. This study generated non-transgenic soybeans with the highest oleic acid content and lowest linolenic acid content reported to date, offering a unique alternative to produce a fatty acid profile similar to olive oil.


Asunto(s)
Ácido Graso Desaturasas/genética , Glycine max/genética , Ácido Oléico/biosíntesis , Aceite de Soja/química , Ácido alfa-Linolénico/biosíntesis , Alelos , Cruzamientos Genéticos , Ácido Graso Desaturasas/metabolismo , Marcadores Genéticos , Genotipo , Missouri , Mutación Missense , Semillas/química , Semillas/genética , Glycine max/química , Glycine max/enzimología
5.
Theor Appl Genet ; 123(5): 793-802, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21681491

RESUMEN

The alteration of fatty acid profiles in soybean to improve soybean oil quality has been a long-time goal of soybean researchers. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of soybean oil compared to other oils. In the lipid biosynthetic pathway, the enzyme fatty acid desaturase 2 (FAD2) is responsible for the conversion of oleic acid precursors to linoleic acid precursors in developing soybean seeds. Two genes encoding FAD2-1A and FAD2-1B were identified to be expressed specifically in seeds during embryogenesis and have been considered to hold an important role in controlling the seed oleic acid content. A total of 22 soybean plant introduction (PI) lines identified to have an elevated oleic acid content were characterized for sequence mutations in the FAD 2-1A and FAD2-1B genes. PI 603452 was found to contain a deletion of a nucleotide in the second exon of FAD2-1A. These important SNPs were used in developing molecular marker genotyping assays. The assays appear to be a reliable and accurate tool to identify the FAD 2-1A and FAD2-1B genotype of wild-type and mutant plants. PI 603452 was subsequently crossed with PI 283327, a soybean line that has a mutation in FAD2-1B. Interestingly, soybean lines carrying both homozygous insertion/deletion mutation (indel) FAD2-1A alleles and mutant FAD2-1B alleles have an average of 82-86% oleic acid content, compared to 20% in conventional soybean, and low levels of linoleic and linolenic acids. The newly identified indel mutation in the FAD2-1A gene offers a simple method for the development of high oleic acid commercial soybean varieties.


Asunto(s)
Ácido Graso Desaturasas/genética , Glycine max/genética , Ácido Oléico/metabolismo , Proteínas de Plantas/genética , Aceite de Soja/genética , Alelos , Mutación , Aceite de Soja/metabolismo , Glycine max/metabolismo
6.
BMC Plant Biol ; 10: 195, 2010 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-20828382

RESUMEN

BACKGROUND: The alteration of fatty acid profiles in soybean [Glycine max (L.) Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. RESULTS: Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. CONCLUSIONS: We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the mutant alleles. The resources described here for the creation of high oleic acid soybeans provide a framework to efficiently develop soybean varieties to meet changing market demands.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Glycine max/genética , Ácidos Oléicos/biosíntesis , Proteínas de Plantas/metabolismo , Semillas/química , Alelos , Secuencia de Aminoácidos , ADN de Plantas/genética , Ácido Graso Desaturasas/genética , Datos de Secuencia Molecular , Mutación Missense , Fenotipo , Proteínas de Plantas/genética , Polimorfismo Genético , Análisis de Secuencia de ADN , Aceite de Soja/química , Glycine max/química , Glycine max/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA