Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063025

RESUMEN

Pulsed electromagnetic fields (PEMFs) are recognized for their potential in regenerative medicine, offering a non-invasive avenue for tissue rejuvenation. While prior research has mainly focused on their effects on bone and dermo-epidermal tissues, the impact of PEMFs on nervous tissue, particularly in the context of neuropathy associated with the diabetic foot, remains relatively unexplored. Addressing this gap, our preliminary in vitro study investigates the effects of complex magnetic fields (CMFs) on glial-like cells derived from mesenchymal cell differentiation, serving as a model for neuropathy of the diabetic foot. Through assessments of cellular proliferation, hemocompatibility, mutagenicity, and mitochondrial membrane potential, we have established the safety profile of the system. Furthermore, the analysis of microRNAs (miRNAs) suggests that CMFs may exert beneficial effects on cell cycle regulation, as evidenced by the upregulation of the miRNAs within the 121, 127, and 142 families, which are known to be associated with mitochondrial function and cell cycle control. This exploration holds promise for potential applications in mitigating neuropathic complications in diabetic foot conditions.


Asunto(s)
Neuropatías Diabéticas , Campos Electromagnéticos , MicroARNs , Mitocondrias , Estrés Oxidativo , Mitocondrias/metabolismo , Neuropatías Diabéticas/terapia , Neuropatías Diabéticas/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/terapia , Enfermedades Neuroinflamatorias/etiología , Potencial de la Membrana Mitocondrial , Proliferación Celular , Magnetoterapia/métodos
2.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675268

RESUMEN

Several factors, such as ischemia, infection and skin injury impair the wound healing process. One common pathway in all these processes is related to the reactive oxygen species (ROS), whose production plays a vital role in wound healing. In this view, several strategies have been developed to stimulate the activation of the antioxidative system, thereby reducing the damage related to oxidative stress and improving wound healing. For this purpose, complex magnetic fields (CMFs) are used in this work on fibroblast and monocyte cultures derived from diabetic patients in order to evaluate their influence on the ROS production and related wound healing properties. Biocompatibility, cytotoxicity, mitochondrial ROS production and gene expression have been evaluated. The results confirm the complete biocompatibility of the treatment and the lack of side effects on cell physiology following the ISO standard indication. Moreover, the results confirm that the CMF treatment induced a reduction in the ROS production, an increase in the macrophage M2 anti-inflammatory phenotype through the activation of miRNA 5591, a reduction in inflammatory cytokines, such as interleukin-1 (IL-1) and IL-6, an increase in anti-inflammatory ones, such as IL-10 and IL-12 and an increase in the markers related to improved wound healing such as collagen type I and integrins. In conclusion, our findings encourage the use of CMFs for the treatment of diabetic foot.


Asunto(s)
Diabetes Mellitus , Campos Electromagnéticos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Inflamación , Antiinflamatorios , Biofisica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...