Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e17375, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915387

RESUMEN

Elevational gradients constitute excellent systems for understanding the mechanisms that generate and maintain global biodiversity patterns. Climatic gradients associated with elevation show strong influence on species distribution in mountains. The study of mountains covered by the same habitat type is an ideal scenario to compare alternatives to the energy hypotheses. Our aim was to investigate how changes in climatic conditions along the elevational gradient drive α- and ß-diversity of four taxa in a mountain system located within a grassland biome. We sampled ants, spiders, birds and plants, and measured climatic variables at six elevational bands (with 10 sampling sites each) established between 470 and 1,000 masl on a mountain from the Ventania Mountain System, Argentina. Species richness per site and ß-diversity (turnover and nestedness) between the lowest band and upper sites were estimated. For most taxa, species richness declined at high elevations and energy, through temperature, was the major driver of species richness for ants, plants and birds, prevailing over productivity and water availability. The major ß-diversity component was turnover for plants, spiders and birds, and nestedness for ants. The unique environmental conditions of the upper bands could favour the occurrence of specialist and endemic species.


Asunto(s)
Altitud , Hormigas , Biodiversidad , Aves , Pradera , Arañas , Animales , Hormigas/fisiología , Hormigas/clasificación , Aves/fisiología , Argentina , Arañas/fisiología , Arañas/clasificación , Plantas/clasificación , Clima , Ecosistema
2.
Sci Rep ; 11(1): 4711, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633146

RESUMEN

Spatial patterns of species richness have been found to be positively associated, a phenom called cross-taxon congruence. This may be explained by a common response to environment or by ecological interactions between taxa. Spatial changes in species richness are related to energy and environmental heterogeneity but their roles in cross-taxon congruence remain poorly explored. Elevational gradients provide a great opportunity to shed light on the underlying drivers of species richness patterns. We study the joint influence of environment and biotic interactions in shaping the cross-taxon congruence of plants and orthopterans species richness, along three elevational gradients in Sierras Grandes, central Argentina. Elevational patterns of species richness of orthopterans and plants were congruent, being temperature the best single predictor of both patterns supporting the energy-related hypotheses. Using a structural equation model, we found that temperature explained plant richness directly and orthopteran richness indirectly via orthopteran abundance. Cross-taxon congruence is likely due to a common response of both taxa to temperature although via different theoretical mechanisms, possibly, range limitations for plants and foraging activity for orthopterans. We disentangled the role of temperature in determining the cross-taxon congruence of plants and orthopterans by showing that a common response to the environment may mask different mechanisms driving the diversity of different taxonomic groups.

3.
PLoS One ; 12(5): e0177573, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28494025

RESUMEN

MicroRNAs (miRNAs) are short, single stranded RNA molecules that regulate the stability and translation of messenger RNAs in diverse eukaryotic groups. Several miRNA genes are of ancient origin and have been maintained in the genomes of animal and plant taxa for hundreds of millions of years, playing key roles in development and physiology. In the last decade, genome and small RNA (sRNA) sequencing of several plant species have helped unveil the evolutionary history of land plants. Among these, the fern group (monilophytes) occupies a key phylogenetic position, as it represents the closest extant cousin taxon of seed plants, i.e. gymno- and angiosperms. However, in spite of their evolutionary, economic and ecological importance, no fern genome has been sequenced yet and few genomic resources are available for this group. Here, we sequenced the small RNA fraction of an epiphytic South American fern, Pleopeltis minima (Polypodiaceae), and compared it to plant miRNA databases, allowing for the identification of miRNA families that are shared by all land plants, shared by all vascular plants (tracheophytes) or shared by euphyllophytes (ferns and seed plants) only. Using the recently described transcriptome of another fern, Lygodium japonicum, we also estimated the degree of conservation of fern miRNA targets in relation to other plant groups. Our results pinpoint the origin of several miRNA families in the land plant evolutionary tree with more precision and are a resource for future genomic and functional studies of fern miRNAs.


Asunto(s)
Evolución Molecular , Helechos/genética , MicroARNs/genética , ARN de Planta/genética , Análisis de Secuencia de ARN/métodos , Secuencia de Bases , Secuencia Conservada/genética , MicroARNs/metabolismo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/metabolismo
4.
J Biotechnol ; 157(2): 334-43, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22115953

RESUMEN

Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of dermaseptin-transformed plants with the AP24/lysozyme construction allowed selection of plants simultaneously expressing the three transgenes. Potato lines expressing individual transgenes or double- and triple-transgene combinations were assayed for resistance to Erwinia carotovora using whole-plant and tuber infection assays. Resistance levels for both infection tests compared consistently for most potato lines and allowed selection of highly resistant phenotypes. Higher resistance levels were found in lines carrying the dermaseptin and lysozyme sequences, indicating that theses proteins are the major contributors to antibacterial activity. Similar results were obtained in tuber infection tests conducted with Streptomyces scabies. Plant lines showing the higher resistance to bacterial infections were challenged with Phytophthora infestans, Rhizoctonia solani and Fusarium solani. Considerable levels of resistance to each of these pathogens were evidenced employing semi-quantitative tests based in detached-leaf inoculation, fungal growth inhibition and in vitro plant inoculation. On the basis of these results, we propose that stacking of these transgenes is a promising approach to achieve resistance to both bacterial and fungal pathogens.


Asunto(s)
Proteínas Anfibias/genética , Péptidos Catiónicos Antimicrobianos/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Solanum tuberosum/genética , Proteínas Anfibias/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Bacterias/genética , Pollos/genética , Hongos/genética , Regulación de la Expresión Génica de las Plantas , Muramidasa/genética , Muramidasa/metabolismo , Pectobacterium carotovorum/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Solanum tuberosum/microbiología , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA