Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37417869

RESUMEN

Much of biochemical regulation ultimately controls growth rate, particularly in microbes. Although time-lapse microscopy visualises cells, determining their growth rates is challenging, particularly for those that divide asymmetrically, like Saccharomyces cerevisiae, because cells often overlap in images. Here, we present the Birth Annotator for Budding Yeast (BABY), an algorithm to determine single-cell growth rates from label-free images. Using a convolutional neural network, BABY resolves overlaps through separating cells by size and assigns buds to mothers by identifying bud necks. BABY uses machine learning to track cells and determine lineages and estimates growth rates as the rates of change of volumes. Using BABY and a microfluidic device, we show that bud growth is likely first sizer- then timer-controlled, that the nuclear concentration of Sfp1, a regulator of ribosome biogenesis, varies before the growth rate does, and that growth rate can be used for real-time control. By estimating single-cell growth rates and so fitness, BABY should generate much biological insight.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , División Celular , Proteínas de Saccharomyces cerevisiae/genética , Microscopía
2.
Phys Biol ; 18(4)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477124

RESUMEN

Biological organisms experience constantly changing environments, from sudden changes in physiology brought about by feeding, to the regular rising and setting of the Sun, to ecological changes over evolutionary timescales. Living organisms have evolved to thrive in this changing world but the general principles by which organisms shape and are shaped by time varying environments remain elusive. Our understanding is particularly poor in the intermediate regime with no separation of timescales, where the environment changes on the same timescale as the physiological or evolutionary response. Experiments to systematically characterize the response to dynamic environments are challenging since such environments are inherently high dimensional. This roadmap deals with the unique role played by time varying environments in biological phenomena across scales, from physiology to evolution, seeking to emphasize the commonalities and the challenges faced in this emerging area of research.


Asunto(s)
Evolución Biológica , Ambiente , Fenómenos Fisiológicos , Factores de Tiempo
3.
Nucleic Acids Res ; 48(21): 12030-12041, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33211866

RESUMEN

The CII protein of temperate coliphage 186, like the unrelated CII protein of phage λ, is a transcriptional activator that primes expression of the CI immunity repressor and is critical for efficient establishment of lysogeny. 186-CII is also highly unstable, and we show that in vivo degradation is mediated by both FtsH and RseP. We investigated the role of CII instability by constructing a 186 phage encoding a protease resistant CII. The stabilised-CII phage was defective in the lysis-lysogeny decision: choosing lysogeny with close to 100% frequency after infection, and forming prophages that were defective in entering lytic development after UV treatment. While lysogenic CI concentration was unaffected by CII stabilisation, lysogenic transcription and CI expression was elevated after UV. A stochastic model of the 186 network after infection indicated that an unstable CII allowed a rapid increase in CI expression without a large overshoot of the lysogenic level, suggesting that instability enables a decisive commitment to lysogeny with a rapid attainment of sensitivity to prophage induction.


Asunto(s)
Proteasas ATP-Dependientes/genética , Colifagos/genética , Endopeptidasas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Lisogenia , Proteínas de la Membrana/genética , Profagos/genética , Proteínas Virales/genética , Proteasas ATP-Dependientes/metabolismo , Colifagos/crecimiento & desarrollo , Colifagos/metabolismo , Colifagos/efectos de la radiación , Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efectos de la radiación , Escherichia coli/virología , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Estadísticos , Profagos/crecimiento & desarrollo , Profagos/metabolismo , Profagos/efectos de la radiación , Estabilidad Proteica/efectos de la radiación , Proteolisis/efectos de la radiación , Procesos Estocásticos , Activación Transcripcional , Rayos Ultravioleta , Proteínas Virales/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(23): 6088-6093, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784812

RESUMEN

Although cells respond specifically to environments, how environmental identity is encoded intracellularly is not understood. Here, we study this organization of information in budding yeast by estimating the mutual information between environmental transitions and the dynamics of nuclear translocation for 10 transcription factors. Our method of estimation is general, scalable, and based on decoding from single cells. The dynamics of the transcription factors are necessary to encode the highest amounts of extracellular information, and we show that information is transduced through two channels: Generalists (Msn2/4, Tod6 and Dot6, Maf1, and Sfp1) can encode the nature of multiple stresses, but only if stress is high; specialists (Hog1, Yap1, and Mig1/2) encode one particular stress, but do so more quickly and for a wider range of magnitudes. In particular, Dot6 encodes almost as much information as Msn2, the master regulator of the environmental stress response. Each transcription factor reports differently, and it is only their collective behavior that distinguishes between multiple environmental states. Changes in the dynamics of the localization of transcription factors thus constitute a precise, distributed internal representation of extracellular change. We predict that such multidimensional representations are common in cellular decision-making.


Asunto(s)
Interacción Gen-Ambiente , Péptidos y Proteínas de Señalización Intracelular/fisiología , Factores de Transcripción/metabolismo , Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Ambiente , Espacio Extracelular/fisiología , Regulación Fúngica de la Expresión Génica/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA