Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neural Eng ; 21(4)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38936392

RESUMEN

Objective.Presence is an important aspect of user experience in virtual reality (VR). It corresponds to the illusion of being physically located in a virtual environment (VE). This feeling is usually measured through questionnaires that disrupt presence, are subjective and do not allow for real-time measurement. Electroencephalography (EEG), which measures brain activity, is increasingly used to monitor the state of users, especially while immersed in VR.Approach.In this paper, we present a way of evaluating presence, through the measure of the attention dedicated to the real environment via an EEG oddball paradigm. Using breaks in presence, this experimental protocol constitutes an ecological method for the study of presence, as different levels of presence are experienced in an identical VE.Main results.Through analysing the EEG data of 18 participants, a significant increase in the neurophysiological reaction to the oddball, i.e. the P300 amplitude, was found in low presence condition compared to high presence condition. This amplitude was significantly correlated with the self-reported measure of presence. Using Riemannian geometry to perform single-trial classification, we present a classification algorithm with 79% accuracy in detecting between two presence conditions.Significance.Taken together our results promote the use of EEG and oddball stimuli to monitor presence offline or in real-time without interrupting the user in the VE.


Asunto(s)
Estimulación Acústica , Electroencefalografía , Realidad Virtual , Humanos , Masculino , Femenino , Electroencefalografía/métodos , Adulto , Adulto Joven , Estimulación Acústica/métodos , Potenciales Relacionados con Evento P300/fisiología , Algoritmos , Atención/fisiología , Potenciales Evocados Auditivos/fisiología
2.
Sci Data ; 10(1): 580, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670009

RESUMEN

We present and share a large database containing electroencephalographic signals from 87 human participants, collected during a single day of brain-computer interface (BCI) experiments, organized into 3 datasets (A, B, and C) that were all recorded using the same protocol: right and left hand motor imagery (MI). Each session contains 240 trials (120 per class), which represents more than 20,800 trials, or approximately 70 hours of recording time. It includes the performance of the associated BCI users, detailed information about the demographics, personality profile as well as some cognitive traits and the experimental instructions and codes (executed in the open-source platform OpenViBE). Such database could prove useful for various studies, including but not limited to: (1) studying the relationships between BCI users' profiles and their BCI performances, (2) studying how EEG signals properties varies for different users' profiles and MI tasks, (3) using the large number of participants to design cross-user BCI machine learning algorithms or (4) incorporating users' profile information into the design of EEG signal classification algorithms.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Humanos , Algoritmos , Bases de Datos Factuales , Mano
3.
IEEE Trans Vis Comput Graph ; 29(4): 2146-2165, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35007194

RESUMEN

Technological developments provide solutions to alleviate the tremendous impact on the health and autonomy due to the impact of dementia on navigation abilities. We systematically reviewed the literature on devices tested to provide assistance to people with dementia during indoor, outdoor and virtual navigation (PROSPERO ID number: 215585). Medline and Scopus databases were searched from inception. Our aim was to summarize the results from the literature to guide future developments. Twenty-three articles were included in our study. Three types of information were extracted from these studies. First, the types of navigation advice the devices provided were assessed through: (i) the sensorial modality of presentation, e.g., visual and tactile stimuli, (ii) the navigation content, e.g., landmarks, and (iii) the timing of presentation, e.g., systematically at intersections. Second, we analyzed the technology that the devices were based on, e.g., smartphone. Third, the experimental methodology used to assess the devices and the navigation outcome was evaluated. We report and discuss the results from the literature based on these three main characteristics. Finally, based on these considerations, recommendations are drawn, challenges are identified and potential solutions are suggested. Augmented reality-based devices, intelligent tutoring systems and social support should particularly further be explored.


Asunto(s)
Realidad Aumentada , Demencia , Humanos , Gráficos por Computador , Bases de Datos Factuales , Teléfono Inteligente , Demencia/diagnóstico , Demencia/terapia
4.
Front Neurogenom ; 3: 1082901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38235470

RESUMEN

Introduction: Strokes leave around 40% of survivors dependent in their activities of daily living, notably due to severe motor disabilities. Brain-computer interfaces (BCIs) have been shown to be efficiency for improving motor recovery after stroke, but this efficiency is still far from the level required to achieve the clinical breakthrough expected by both clinicians and patients. While technical levers of improvement have been identified (e.g., sensors and signal processing), fully optimized BCIs are pointless if patients and clinicians cannot or do not want to use them. We hypothesize that improving BCI acceptability will reduce patients' anxiety levels, while increasing their motivation and engagement in the procedure, thereby favoring learning, ultimately, and motor recovery. In other terms, acceptability could be used as a lever to improve BCI efficiency. Yet, studies on BCI based on acceptability/acceptance literature are missing. Thus, our goal was to model BCI acceptability in the context of motor rehabilitation after stroke, and to identify its determinants. Methods: The main outcomes of this paper are the following: i) we designed the first model of acceptability of BCIs for motor rehabilitation after stroke, ii) we created a questionnaire to assess acceptability based on that model and distributed it on a sample representative of the general public in France (N = 753, this high response rate strengthens the reliability of our results), iii) we validated the structure of this model and iv) quantified the impact of the different factors on this population. Results: Results show that BCIs are associated with high levels of acceptability in the context of motor rehabilitation after stroke and that the intention to use them in that context is mainly driven by the perceived usefulness of the system. In addition, providing people with clear information regarding BCI functioning and scientific relevance had a positive influence on acceptability factors and behavioral intention. Discussion: With this paper we propose a basis (model) and a methodology that could be adapted in the future in order to study and compare the results obtained with: i) different stakeholders, i.e., patients and caregivers; ii) different populations of different cultures around the world; and iii) different targets, i.e., other clinical and non-clinical BCI applications.

5.
Sensors (Basel) ; 21(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502629

RESUMEN

Research on brain-computer interfaces (BCIs) has become more democratic in recent decades, and experiments using electroencephalography (EEG)-based BCIs has dramatically increased. The variety of protocol designs and the growing interest in physiological computing require parallel improvements in processing and classification of both EEG signals and bio signals, such as electrodermal activity (EDA), heart rate (HR) or breathing. If some EEG-based analysis tools are already available for online BCIs with a number of online BCI platforms (e.g., BCI2000 or OpenViBE), it remains crucial to perform offline analyses in order to design, select, tune, validate and test algorithms before using them online. Moreover, studying and comparing those algorithms usually requires expertise in programming, signal processing and machine learning, whereas numerous BCI researchers come from other backgrounds with limited or no training in such skills. Finally, existing BCI toolboxes are focused on EEG and other brain signals but usually do not include processing tools for other bio signals. Therefore, in this paper, we describe BioPyC, a free, open-source and easy-to-use Python platform for offline EEG and biosignal processing and classification. Based on an intuitive and well-guided graphical interface, four main modules allow the user to follow the standard steps of the BCI process without any programming skills: (1) reading different neurophysiological signal data formats, (2) filtering and representing EEG and bio signals, (3) classifying them, and (4) visualizing and performing statistical tests on the results. We illustrate BioPyC use on four studies, namely classifying mental tasks, the cognitive workload, emotions and attention states from EEG signals.


Asunto(s)
Boidae , Interfaces Cerebro-Computador , Algoritmos , Animales , Encéfalo , Electroencefalografía , Procesamiento de Señales Asistido por Computador
6.
Front Hum Neurosci ; 15: 635653, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815081

RESUMEN

While often presented as promising assistive technologies for motor-impaired users, electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) remain barely used outside laboratories due to low reliability in real-life conditions. There is thus a need to design long-term reliable BCIs that can be used outside-of-the-lab by end-users, e.g., severely motor-impaired ones. Therefore, we propose and evaluate the design of a multi-class Mental Task (MT)-based BCI for longitudinal training (20 sessions over 3 months) of a tetraplegic user for the CYBATHLON BCI series 2019. In this BCI championship, tetraplegic pilots are mentally driving a virtual car in a racing video game. We aimed at combining a progressive user MT-BCI training with a newly designed machine learning pipeline based on adaptive Riemannian classifiers shown to be promising for real-life applications. We followed a two step training process: the first 11 sessions served to train the user to control a 2-class MT-BCI by performing either two cognitive tasks (REST and MENTAL SUBTRACTION) or two motor-imagery tasks (LEFT-HAND and RIGHT-HAND). The second training step (9 remaining sessions) applied an adaptive, session-independent Riemannian classifier that combined all 4 MT classes used before. Moreover, as our Riemannian classifier was incrementally updated in an unsupervised way it would capture both within and between-session non-stationarity. Experimental evidences confirm the effectiveness of this approach. Namely, the classification accuracy improved by about 30% at the end of the training compared to initial sessions. We also studied the neural correlates of this performance improvement. Using a newly proposed BCI user learning metric, we could show our user learned to improve his BCI control by producing EEG signals matching increasingly more the BCI classifier training data distribution, rather than by improving his EEG class discrimination. However, the resulting improvement was effective only on synchronous (cue-based) BCI and it did not translate into improved CYBATHLON BCI game performances. For the sake of overcoming this in the future, we unveil possible reasons for these limited gaming performances and identify a number of promising future research directions. Importantly, we also report on the evolution of the user's neurophysiological patterns and user experience throughout the BCI training and competition.

7.
J Neural Eng ; 18(1)2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33181488

RESUMEN

Mental-tasks based brain-computer interfaces (MT-BCIs) allow their users to interact with an external device solely by using brain signals produced through mental tasks. While MT-BCIs are promising for many applications, they are still barely used outside laboratories due to their lack of reliability. MT-BCIs require their users to develop the ability to self-regulate specific brain signals. However, the human learning process to control a BCI is still relatively poorly understood and how to optimally train this ability is currently under investigation. Despite their promises and achievements, traditional training programs have been shown to be sub-optimal and could be further improved. In order to optimize user training and improve BCI performance, human factors should be taken into account. An interdisciplinary approach should be adopted to provide learners with appropriate and/or adaptive training. In this article, we provide an overview of existing methods for MT-BCI user training-notably in terms of environment, instructions, feedback and exercises. We present a categorization and taxonomy of these training approaches, provide guidelines on how to choose the best methods and identify open challenges and perspectives to further improve MT-BCI user training.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo/fisiología , Electroencefalografía/métodos , Humanos , Aprendizaje , Reproducibilidad de los Resultados
8.
Neuroimage Clin ; 28: 102417, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33039972

RESUMEN

The neuronal loss resulting from stroke forces 80% of the patients to undergo motor rehabilitation, for which Brain-Computer Interfaces (BCIs) and NeuroFeedback (NF) can be used. During the rehabilitation, when patients attempt or imagine performing a movement, BCIs/NF provide them with a synchronized sensory (e.g., tactile) feedback based on their sensorimotor-related brain activity that aims at fostering brain plasticity and motor recovery. The co-activation of ascending (i.e., somatosensory) and descending (i.e., motor) networks indeed enables significant functional motor improvement, together with significant sensorimotor-related neurophysiological changes. Somatosensory abilities are essential for patients to perceive the feedback provided by the BCI system. Thus, somatosensory impairments may significantly alter the efficiency of BCI-based motor rehabilitation. In order to precisely understand and assess the impact of somatosensory impairments, we first review the literature on post-stroke BCI-based motor rehabilitation (14 randomized clinical trials). We show that despite the central role that somatosensory abilities play on BCI-based motor rehabilitation post-stroke, the latter are rarely reported and used as inclusion/exclusion criteria in the literature on the matter. We then argue that somatosensory abilities have repeatedly been shown to influence the motor rehabilitation outcome, in general. This stresses the importance of also considering them and reporting them in the literature in BCI-based rehabilitation after stroke, especially since half of post-stroke patients suffer from somatosensory impairments. We argue that somatosensory abilities should systematically be assessed, controlled and reported if we want to precisely assess the influence they have on BCI efficiency. Not doing so could result in the misinterpretation of reported results, while doing so could improve (1) our understanding of the mechanisms underlying motor recovery (2) our ability to adapt the therapy to the patients' impairments and (3) our comprehension of the between-subject and between-study variability of therapeutic outcomes mentioned in the literature.


Asunto(s)
Interfaces Cerebro-Computador , Neurorretroalimentación , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Electroencefalografía , Humanos , Recuperación de la Función
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...