Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(32): e202403292, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735849

RESUMEN

We report an iron-catalyzed decarboxylative C(sp3)-O bond-forming reaction under mild, base-free conditions with visible light irradiation. The transformation uses readily available and structurally diverse carboxylic acids, iron photocatalyst, and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) derivatives as oxygenation reagents. The process exhibits a broad scope in acids possessing a wide range of stereoelectronic properties and functional groups. The developed reaction was applied to late-stage oxygenation of a series of bio-active molecules. The reaction leverages the ability of iron complexes to generate carbon-centered radicals directly from carboxylic acids by photoinduced carboxylate-to-iron charge transfer. Kinetic, electrochemical, EPR, UV/Vis, HRMS, and DFT studies revealed that TEMPO has a triple role in the reaction: as an oxygenation reagent, an oxidant to turn over the Fe-catalyst, and an internal base for the carboxylic acid deprotonation. The obtained TEMPO adducts represent versatile synthetic intermediates that were further engaged in C-C and C-heteroatom bond-forming reactions using commercial organo-photocatalysts and nucleophilic reagents.

2.
J Phys Chem Lett ; 14(47): 10531-10536, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37972218

RESUMEN

While so far it has been possible to calculate vibrational spectra of mixtures at a particular composition, we present here a novel cluster approach for a fast and robust calculation of mole fraction dependent infrared and vibrational circular dichroism spectra at the example of acetonitrile/(R)-butan-2-ol mixtures. By assigning weights to a limited number of quantum chemically calculated clusters, vibrational spectra can be obtained at any desired composition by a weighted average of the single cluster spectra. In this way, peak positions carrying information about intermolecular interactions can be predicted. We show that mole fraction dependent peak shifts can be accurately modeled and, that experimentally recorded infrared spectra can be reproduced with high accuracy over the entire mixing range. Because only a very limited number of clusters is required, the presented approach is a valuable and computationally efficient tool to access mole fraction dependent spectra of mixtures on a routine basis.

3.
Phys Chem Chem Phys ; 21(43): 23803-23807, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31661103

RESUMEN

Step-scan Fourier-transform infrared spectroscopy was used to monitor the photochemical reactions following the 266 nm-photolysis of aqueous ferrioxalate solutions on microsecond-to-millisecond time scales. Together with most recent observations from ultrafast infrared spectroscopy the reported results finally disclose the full molecular-level mechanism of a photochemical system that is widely known as the Hatchard-Parker actinometer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA