Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 31(Pt 4): 690-697, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38843002

RESUMEN

A reliable `in situ' method for wavefront sensing in the soft X-ray domain is reported, developed for the characterization of rotationally symmetric optical elements, like an ellipsoidal mirror shell. In a laboratory setup, the mirror sample is irradiated by an electron-excited (4.4 keV), micrometre-sized (∼2 µm) fluorescence source (carbon Kα, 277 eV). Substantially, the three-dimensional intensity distribution I(r) is recorded by a CCD camera (2048 × 512 pixels of 13.5 µm) at two positions along the optical axis, symmetrically displaced by ±21-25% from the focus. The transport-of-intensity equation is interpreted in a geometrical sense from plane to plane and implemented as a ray tracing code, to retrieve the phase Φ(r) from the radial intensity gradient on a sub-pixel scale. For reasons of statistical reliability, five intra-/extra-focal CCD image pairs are evaluated and averaged to an annular two-dimensional map of the wavefront error {\cal W}. In units of the test wavelength (C Kα), an r.m.s. value \sigma_{\cal{W}} = ±10.9λ0 and a peak-to-valley amplitude of ±31.3λ0 are obtained. By means of the wavefront, the focus is first reconstructed with a result for its diameter of 38.4 µm, close to the direct experimental observation of 39.4 µm (FWHM). Secondly, figure and slope errors of the ellipsoid are characterized with an average of ±1.14 µm and ±8.8 arcsec (r.m.s.), respectively, the latter in reasonable agreement with the measured focal intensity distribution. The findings enable, amongst others, the precise alignment of axisymmetric X-ray mirrors or the design of a wavefront corrector for high-resolution X-ray science.

2.
Radiat Res ; 168(3): 382-7, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17705629

RESUMEN

A large-scale, double-stream gas puff target has been illuminated by sub-kJ, near-infrared (NIR) focused laser pulses at the PALS facility (Prague Asterix Laser System) to produce high-energy pulses of soft X rays from hot, dense plasma. The double-puff arrangement ensures high gas density and conversion efficiency from NIR to X rays approaching that typical for solid targets. In addition, its major advantage over solid targets is that it is free of debris and has substantially suppressed charged-particle emission. The X-ray emission characteristics of the source were determined for a range of gases that included krypton, xenon, N(2), CO and N(2)-CO. A demonstrated application of the xenon-based source is a single-shot damage induction to plasmid DNA. The yields of single-strand breaks (SSBs) and double-strand breaks (DSBs) were determined as a function of energy fluence adjusted by varying distance of sample from the source and thickness of aluminum filters.


Asunto(s)
Daño del ADN/efectos de la radiación , Rayos Láser , Plásmidos/química , Radiobiología/instrumentación , Investigación/instrumentación , Manejo de Especímenes/instrumentación , Rayos X , Diseño de Equipo , Análisis de Falla de Equipo , Nanotecnología/instrumentación , Nanotecnología/métodos , Plásmidos/efectos de la radiación , Dosis de Radiación , Radiobiología/métodos , Proyectos de Investigación , Manejo de Especímenes/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA