Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 663
Filtrar
1.
Mol Genet Metab ; 143(1-2): 108572, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39265286

RESUMEN

INTRODUCTION: Diseases caused by lysosomal dysfunction often exhibit multisystemic involvement, resulting in substantial morbidity and mortality. Ensuring accurate diagnoses for individuals with lysosomal diseases (LD) is of great importance, especially with the increasing prominence of genetic testing as a primary diagnostic method. As the list of genes associated with LD continues to expand due to the use of more comprehensive tests such as exome and genome sequencing, it is imperative to understand the clinical validity of the genes, as well as identify appropriate genes for inclusion in multi-gene testing and sequencing panels. The Clinical Genome Resource (ClinGen) works to determine the clinical importance of genes and variants to support precision medicine. As part of this work, ClinGen has developed a semi-quantitative framework to assess the strength of evidence for the role of a gene in a disease. Given the diversity in gene composition across LD panels offered by various laboratories and the evolving comprehension of genetic variants affecting secondary lysosomal functions, we developed a scoring system to define LD (Lysosomal Disease Scoring System - LDSS). This system sought to aid in the prioritization of genes for clinical validity curation and assess their suitability for LD-targeted sequencing panels. METHODS: Through literature review encompassing terms associated with both classically designated LD and LFRD, we identified 14 criteria grouped into "Overall Definition," "Phenotype," and "Pathophysiology." These criteria included concepts such as the "accumulation of undigested or partially digested macromolecules within the lysosome" and being "associated with a wide spectrum of clinical manifestations impacting multiple organs and systems." The criteria, along with their respective weighted values, underwent refinement through expert panel evaluation differentiating them between "major" and "minor" criteria. Subsequently, the LDSS underwent validation on 12 widely acknowledged LD and was later tested by applying these criteria to the Lysosomal Disease Network's (LDN) official Gene List. RESULTS: The final LDSS comprised 4 major criteria and 10 minor criteria, with a cutoff of 2 major or 1 major and 3 minor criteria established to define LD. Interestingly, when applied to both the LDN list and a comprehensive gene list encompassing genes included in clinical panels and published as LFRD genes, we identified four genes (GRN, SLC29A3, CLN7 and VPS33A) absent from the LDN list, that were deemed associated with LD. Conversely, a subset of non-classic genes included in the LDN list, such as MTOR, OCRL, and SLC9A6, received lower LDSS scores for their associated disease entities. While these genes may not be suitable for inclusion in clinical LD multi-gene panels, they could be considered for inclusion on other, non-LD gene panels. DISCUSSION: The LDSS offers a systematic approach to prioritize genes for clinical validity assessment. By identifying genes with high scores on the LDSS, this method enhanced the efficiency of gene curation by the ClinGen LD GCEP. CONCLUSION: The LDSS not only serves as a tool for gene prioritization prior to clinical validity curation, but also contributes to the ongoing discussion on the definition of LD. Moreover, the LDSS provides a flexible framework adaptable to future discoveries, ensuring its relevance in the ever-expanding landscape of LD research.

2.
J Endocr Soc ; 8(9): bvae137, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39109292

RESUMEN

Context: Variants in melanocortin 4 receptor (MC4R) pathway-related genes have been associated with obesity. The association of these variants with cardiometabolic parameters are not fully known. Objective: We compared the severity of obesity and cardiometabolic risk markers in children with MC4R pathway-related clinically reported genetic variants relative to children without these variants. Methods: A retrospective chart review was performed in children with obesity who underwent multigene panel testing for monogenic obesity. Results: Data on a total of 104 children were examined, with 93 (89%) identified as White. Thirty-nine (37.5%) patients had clinically reported variants in the MC4R pathway, and the remaining 65 patients did not have reported MC4R pathway-related variants. Among the MC4R-related variants, PCSK1 risk alleles were most common, reported in 15 children (14%). The maximum body mass index percent of the 95th percentile was not different between groups (P = .116). Low-density lipoprotein cholesterol (LDL-C) was not different between groups (P = .132). However, subgroup analysis demonstrated higher LDL cholesterol in children with the PCSK1 c.661A>G risk allele relative to those with MC4R-related variant of uncertain significance (P = .047), negative genetic testing (P = .012), and those with non-MC4R related variants (P = .048). The blood pressure, fasting glucose, hemoglobin A1C, total cholesterol, alanine transaminase, and high-density lipoprotein cholesterol were not different between groups. Conclusion: Variants in the MC4R pathway-related genes were not associated with severity of obesity and cardiometabolic risk markers except for the c.661A>G PCSK1 risk allele, which was associated with higher LDL-C levels.

3.
Clin Chem ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206579

RESUMEN

BACKGROUND: Sphingolipids play a crucial role in cellular functions and are essential components of cell membranes, signaling molecules, and lipid metabolism. In particular, ceramide is a key intermediate in sphingolipid metabolism and defects in ceramide metabolism can lead to various inborn errors of metabolism, making ceramides important targets for clinical screening and diagnosis. Detecting altered concentration patterns of sphingolipids is desirable for distinguishing related inborn errors of metabolism for diagnosis and treatment monitoring. METHODS: We developed a liquid chromatography-tandem mass spectrometry method with a pathway-oriented approach to focus on sphingolipids involved in ceramide metabolism. A total of 47 sphingolipids bearing different head groups and side chains were targeted. Precision/reproducibility, linearity, and spike recovery extraction efficiency tests were performed on plasma and serum samples from confirmed cases of sphingolipidosis. RESULTS: Linearity of the method showed the coefficient of determination (r2) for all standards to be >0.99 with a slope of 1.00 ± 0.01. Intra- and interday reproducibility of standards spiked into plasma and serum revealed a coefficient of variation <20%. Spike and recovery assessment showed recovery values of 80%-120% for all standards. Altered levels of sphingolipids from patients with hereditary sensory and autonomic neuropathy caused by pathogenic variants in SPTLC2 and hypomyelinating leukodystrophy related to variants in DEGS1 were detected, in agreement with trends reported in earlier studies confirming the utility of this pathway-centric method. CONCLUSIONS: This method can serve as a useful tool to simultaneously monitor sphingolipids, enabling screening and diagnosis of inborn errors of ceramide metabolism.

4.
Ann Neurol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078102

RESUMEN

OBJECTIVES: We aimed to elucidate the pathogenic mechanisms underlying autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), and to understand the genotype/phenotype correlation of structural variants (SVs) in the LMNB1 locus. BACKGROUND: Since the discovery of 3D genome architectures and topologically associating domains (TADs), new pathomechanisms have been postulated for SVs, regardless of gene dosage changes. ADLD is a rare genetic disease associated with duplications (classical ADLD) or noncoding deletions (atypical ADLD) in the LMNB1 locus. METHODS: High-throughput chromosome conformation capture, RNA sequencing, histopathological analyses of postmortem brain tissues, and clinical and neuroradiological investigations were performed. RESULTS: We collected data from >20 families worldwide carrying SVs in the LMNB1 locus and reported strong clinical variability, even among patients carrying duplications of the entire LMNB1 gene, ranging from classical and atypical ADLD to asymptomatic carriers. We showed that patients with classic ADLD always carried intra-TAD duplications, resulting in a simple gene dose gain. Atypical ADLD was caused by LMNB1 forebrain-specific misexpression due to inter-TAD deletions or duplications. The inter-TAD duplication, which extends centromerically and crosses the 2 TAD boundaries, did not cause ADLD. Our results provide evidence that astrocytes are key players in ADLD pathology. INTERPRETATION: Our study sheds light on the 3D genome and TAD structural changes associated with SVs in the LMNB1 locus, and shows that a duplication encompassing LMNB1 is not sufficient per se to diagnose ADLD, thereby strongly affecting genetic counseling. Our study supports breaking TADs as an emerging pathogenic mechanism that should be considered when studying brain diseases. ANN NEUROL 2024.

5.
Hepatol Commun ; 8(6)2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38829197

RESUMEN

BACKGROUND: The pathogenesis of primary sclerosing cholangitis (PSC) is unclear, although studies implicate IL-17A as an inflammatory mediator in this disease. However, a direct assessment of IL-17 signaling in PSC cholangiocytes is lacking. In this study, we aimed to investigate and characterize the response of PSC extrahepatic cholangiocyte organoids (ECO) to IL-17A stimulation. METHODS: Cholangiocytes obtained from patients with PSC and without PSC by endoscopic retrograde cholangiography were cultured as ECO. The ECO were treated with vehicle or IL-17A and assessed by transcriptomics, secretome analysis, and genome sequencing. RESULTS: Unsupervised clustering of all integrated single-cell RNA sequencing data identified 8 cholangiocyte clusters that did not differ between PSC and non-PSC ECO. However, PSC ECO cells demonstrated a robust response to IL-17 treatment, as noted by an increased number of differentially expressed genes by transcriptomics and more abundant chemokine and cytokine expression and secretion. After rigorous filtering, genome sequencing identified candidate somatic variants shared among PSC ECO from unrelated individuals. However, no candidate rare variants in genes regulating the IL-17 pathway were identified, but rare variants regulating the MAPK signaling pathway were present in all PSC ECO. CONCLUSIONS: PSC and non-PSC patient-derived ECO respond differently to IL-17 stimulation, implicating this pathway in the pathogenesis of PSC.


Asunto(s)
Colangitis Esclerosante , Interleucina-17 , Organoides , Transducción de Señal , Humanos , Interleucina-17/metabolismo , Colangitis Esclerosante/inmunología , Colangitis Esclerosante/genética , Transcriptoma , Masculino
6.
J Clin Invest ; 134(16)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38885295

RESUMEN

IgG4-related disease (IgG4-RD) is a systemic immune-mediated fibroinflammatory disease whose pathomechanisms remain poorly understood. Here, we identified gene variants in familial IgG4-RD and determined their functional consequences. All 3 affected members of the family shared variants of the transcription factor IKAROS, encoded by IKZF1, and the E3 ubiquitin ligase UBR4. The IKAROS variant increased binding to the FYN promoter, resulting in higher transcription of FYN in T cells. The UBR4 variant prevented the lysosomal degradation of the phosphatase CD45. In the presence of elevated FYN, CD45 functioned as a positive regulatory loop, lowering the threshold for T cell activation. Consequently, T cells from the affected family members were hyperresponsive to stimulation. When transduced with a low-avidity, autoreactive T cell receptor, their T cells responded to the autoantigenic peptide. In parallel, high expression of FYN in T cells biased their differentiation toward Th2 polarization by stabilizing the transcription factor JunB. This bias was consistent with the frequent atopic manifestations in patients with IgG4-RD, including the affected family members in the present study. Building on the functional consequences of these 2 variants, we propose a disease model that is not only instructive for IgG4-RD but also for atopic diseases and autoimmune diseases associated with an IKZF1 risk haplotype.


Asunto(s)
Autoinmunidad , Factor de Transcripción Ikaros , Células Th2 , Ubiquitina-Proteína Ligasas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Autoinmunidad/genética , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/inmunología , Enfermedad Relacionada con Inmunoglobulina G4/genética , Enfermedad Relacionada con Inmunoglobulina G4/inmunología , Enfermedad Relacionada con Inmunoglobulina G4/patología , Linaje , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/inmunología , Células Th2/inmunología , Células Th2/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología
7.
Eur J Hum Genet ; 32(7): 879-883, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38702431

RESUMEN

Numerous large scale genomic studies have uncovered rare but recurrent pathogenetic variants in a significant number of genes encoding epigenetic machinery in cases with neurodevelopmental disorders (NDD) especially autism spectrum disorder (ASD). These findings provide strong support for the functional importance of epigenetic regulators in neurodevelopment. After the clinical genomics evaluation of the patients using exome sequencing, we have identified, three novel protein-truncating variants (PTVs) in the MSL2 gene (OMIM: 614802) which encodes a chromatin modifying enzyme. MSL2 modifies chromatin through both mono-ubiquitination of histone 2B on lysine 34 (K34) and acetylation of histone H4 on lysine 16 (K16). We reported first time the detailed clinical features associated with 3 MSL2 PTVs. There are 15 PTVs (13 de novo) reported from the large genomics studies (12 cases) or ClinVar (3 cases) of NDD, ASD, and developmental disorders (DD) but the specific clinical features for these cases are not described. Taken together, our descriptions of dysmorphic face and other features support the causal role of MSL2 in a likely syndromic neurodevelopmental disorder and add MSL2 to a growing list of epigenetic genes implicated in ASD.


Asunto(s)
Trastorno del Espectro Autista , Niño , Preescolar , Femenino , Humanos , Masculino , Trastorno del Espectro Autista/genética , Cromatina/genética , Cromatina/metabolismo , Mutación , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Síndrome
8.
Orphanet J Rare Dis ; 19(1): 216, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790019

RESUMEN

BACKGROUND: Though next-generation sequencing (NGS) tests like exome sequencing (ES), genome sequencing (GS), and panels derived from exome and genome data (EGBP) are effective for rare diseases, the ideal diagnostic approach is debated. Limited research has explored reanalyzing raw ES and GS data post-negative EGBP results for diagnostics. RESULTS: We analyzed complete ES/GS raw sequencing data from Mayo Clinic's Program for Rare and Undiagnosed Diseases (PRaUD) patients to assess whether supplementary findings could augment diagnostic yield. ES data from 80 patients (59 adults) and GS data from 20 patients (10 adults), averaging 43 years in age, were analyzed. Most patients had renal (n=44) and auto-inflammatory (n=29) phenotypes. Ninety-six cases had negative findings and in four cases additional genetic variants were found, including a variant related to a recently described disease (RRAGD-related hypomagnesemia), a variant missed due to discordant inheritance pattern (COL4A3), a variant with high allelic frequency (NPHS2) in the general population, and a variant associated with an initially untargeted phenotype (HNF1A). CONCLUSION: ES and GS show diagnostic yields comparable to EGBP for single-system diseases. However, EGBP's limitations in detecting new disease-associated genes underscore the necessity for periodic updates.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Adulto , Femenino , Masculino , Persona de Mediana Edad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación del Exoma/métodos , Exoma/genética , Adulto Joven , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Anciano , Adolescente , Secuenciación Completa del Genoma/métodos
10.
BMC Genomics ; 25(1): 371, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627676

RESUMEN

BACKGROUND: X-chromosome inactivation (XCI) is an epigenetic process that occurs during early development in mammalian females by randomly silencing one of two copies of the X chromosome in each cell. The preferential inactivation of either the maternal or paternal copy of the X chromosome in a majority of cells results in a skewed or non-random pattern of X inactivation and is observed in over 25% of adult females. Identifying skewed X inactivation is of clinical significance in patients with suspected rare genetic diseases due to the possibility of biased expression of disease-causing genes present on the active X chromosome. The current clinical test for the detection of skewed XCI relies on the methylation status of the methylation-sensitive restriction enzyme (Hpall) binding site present in proximity of short tandem polymorphic repeats on the androgen receptor (AR) gene. This approach using one locus results in uninformative or inconclusive data for 10-20% of tests. Further, recent studies have shown inconsistency between methylation of the AR locus and the state of inactivation of the X chromosome. Herein, we develop a method for estimating X inactivation status, using exome and transcriptome sequencing data derived from blood in 227 female samples. We built a reference model for evaluation of XCI in 135 females from the GTEx consortium. We tested and validated the model on 11 female individuals with different types of undiagnosed rare genetic disorders who were clinically tested for X-skew using the AR gene assay and compared results to our outlier-based analysis technique. RESULTS: In comparison to the AR clinical test for identification of X inactivation, our method was concordant with the AR method in 9 samples, discordant in 1, and provided a measure of X inactivation in 1 sample with uninformative clinical results. We applied this method on an additional 81 females presenting to the clinic with phenotypes consistent with different hereditary disorders without a known genetic diagnosis. CONCLUSIONS: This study presents the use of transcriptome and exome sequencing data to provide an accurate and complete estimation of X-inactivation and skew status in a cohort of female patients with different types of suspected rare genetic disease.


Asunto(s)
Exoma , Inactivación del Cromosoma X , Adulto , Humanos , Femenino , Transcriptoma , Secuenciación del Exoma , Cromosomas Humanos X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA