Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39059380

RESUMEN

The highly conserved and essential Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has emerged as the leading target for vaccines against the disease-causing blood stage of malaria. However, the features of the human vaccine-induced antibody response that confer highly potent inhibition of malaria parasite invasion into red blood cells are not well defined. Here, we characterize 236 human IgG monoclonal antibodies, derived from 15 donors, induced by the most advanced PfRH5 vaccine. We define the antigenic landscape of this molecule and establish that epitope specificity, antibody association rate, and intra-PfRH5 antibody interactions are key determinants of functional anti-parasitic potency. In addition, we identify a germline IgG gene combination that results in an exceptionally potent class of antibody and demonstrate its prophylactic potential to protect against P. falciparum parasite challenge in vivo. This comprehensive dataset provides a framework to guide rational design of next-generation vaccines and prophylactic antibodies to protect against blood-stage malaria.

2.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559088

RESUMEN

To keep ahead of the evolution of resistance to insecticides in mosquitoes, national malaria control programmes must make use of a range of insecticides, both old and new, while monitoring resistance mechanisms. Knowledge of the mechanisms of resistance remains limited in Anopheles arabiensis, which in many parts of Africa is of increasing importance because it is apparently less susceptible to many indoor control interventions. Furthermore, comparatively little is known in general about resistance to non-pyrethroid insecticides such as pirimiphos-methyl (PM), which are crucial for effective control in the context of resistance to pyrethroids. We performed a genome-wide association study to determine the molecular mechanisms of resistance to deltamethrin (commonly used in bednets) and PM, in An. arabiensis from two regions in Tanzania. Genomic regions of positive selection in these populations were largely driven by copy number variants (CNVs) in gene families involved in resistance to these two insecticides. We found evidence of a new gene cluster involved in resistance to PM, identifying a strong selective sweep tied to a CNV in the Coeae2g-Coeae6g cluster of carboxylesterase genes. Using complementary data from An. coluzzii in Ghana, we show that copy number at this locus is significantly associated with PM resistance. Similarly, for deltamethrin, resistance was strongly associated with a novel CNV allele in the Cyp6aa / Cyp6p cluster. Against this background of metabolic resistance, target site resistance was very rare or absent for both insecticides. Mutations in the pyrethroid target site Vgsc were at very low frequency in Tanzania, yet combining these samples with three An. arabiensis individuals from West Africa revealed a startling diversity of evolutionary origins of target site resistance, with up to 5 independent origins of Vgsc-995 mutations found within just 8 haplotypes. Thus, despite having been first recorded over 10 years ago, Vgsc resistance mutations in Tanzanian An. arabiensis have remained at stable low frequencies. Overall, our results provide a new copy number marker for monitoring resistance to PM in malaria mosquitoes, and reveal the complex picture of resistance patterns in An. arabiensis.

3.
Nat Commun ; 14(1): 4946, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587104

RESUMEN

Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of malaria control, but the genetics of resistance are only partially understood. We performed a large scale multi-country genome-wide association study of resistance to two widely used insecticides: deltamethrin and pirimiphos-methyl, using sequencing data from An. gambiae and An. coluzzii from ten locations in West Africa. Resistance was highly multi-genic, multi-allelic and variable between populations. While the strongest and most consistent association with deltamethrin resistance came from Cyp6aa1, this was based on several independent copy number variants (CNVs) in An. coluzzii, and on a non-CNV haplotype in An. gambiae. For pirimiphos-methyl, signals included Ace1, cytochrome P450s, glutathione S-transferases and the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes showed evidence of cross-resistance to both insecticides. These locally-varying, multi-allelic patterns highlight the challenges involved in genomic monitoring of resistance, and may form the basis for improved surveillance methods.


Asunto(s)
Anopheles , Insecticidas , Piretrinas , Animales , Anopheles/genética , Insecticidas/farmacología , Estudio de Asociación del Genoma Completo , Organofosfatos/farmacología , Piretrinas/farmacología
4.
bioRxiv ; 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36712022

RESUMEN

Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of the most widespread tools currently used to control malaria. The genetic underpinnings of resistance are still only partially understood, with much of the variance in resistance phenotype left unexplained. We performed a multi-country large scale genome-wide association study of resistance to two insecticides widely used in malaria control: deltamethrin and pirimiphos-methyl. Using a bioassay methodology designed to maximise the phenotypic difference between resistant and susceptible samples, we sequenced 969 phenotyped female An. gambiae and An. coluzzii from ten locations across four countries in West Africa (Benin, Côte d'Ivoire, Ghana and Togo), identifying single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) segregating in the populations. The patterns of resistance association were highly multiallelic and variable between populations, with different genomic regions contributing to resistance, as well as different mutations within a given region. While the strongest and most consistent association with deltamethrin resistance came from the region around Cyp6aa1 , this resistance was based on a combination of several independent CNVs in An. coluzzii , and on a non-CNV bearing haplotype in An. gambiae . Further signals involved a range of cytochrome P450, mitochondrial, and immunity genes. Similarly, for pirimiphos-methyl, while the strongest signal came from the region of Ace1 , more widespread signals included cytochrome P450s, glutathione S-transferases, and a subunit of the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes were associated with resistance to both insecticide classes, suggesting possible cross-resistance mechanisms. These locally-varying, multigenic and multiallelic patterns highlight the challenges involved in genomic monitoring and surveillance of resistance, and form the basis for improvement of methods used to detect and predict resistance. Based on simulations of resistance variants, we recommend that yet larger scale studies, exceeding 500 phenotyped samples per population, are required to better identify associated genomic regions.

5.
Mol Ecol ; 31(16): 4307-4318, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35775282

RESUMEN

Studies of insecticide resistance provide insights into the capacity of populations to show rapid evolutionary responses to contemporary selection. Malaria control remains heavily dependent on pyrethroid insecticides, primarily in long lasting insecticidal nets (LLINs). Resistance in the major malaria vectors has increased in concert with the expansion of LLIN distributions. Identifying genetic mechanisms underlying high-level resistance is crucial for the development and deployment of resistance-breaking tools. Using the Anopheles gambiae 1000 genomes (Ag1000g) data we identified a very recent selective sweep in mosquitoes from Uganda which localized to a cluster of cytochrome P450 genes. Further interrogation revealed a haplotype involving a trio of mutations, a nonsynonymous point mutation in Cyp6p4 (I236M), an upstream insertion of a partial Zanzibar-like transposable element (TE) and a duplication of the Cyp6aa1 gene. The mutations appear to have originated recently in An. gambiae from the Kenya-Uganda border, with stepwise replacement of the double-mutant (Zanzibar-like TE and Cyp6p4-236 M) with the triple-mutant haplotype (including Cyp6aa1 duplication), which has spread into the Democratic Republic of Congo and Tanzania. The triple-mutant haplotype is strongly associated with increased expression of genes able to metabolize pyrethroids and is strongly predictive of resistance to pyrethroids most notably deltamethrin. Importantly, there was increased mortality in mosquitoes carrying the triple-mutation when exposed to nets cotreated with the synergist piperonyl butoxide (PBO). Frequencies of the triple-mutant haplotype remain spatially variable within countries, suggesting an effective marker system to guide deployment decisions for limited supplies of PBO-pyrethroid cotreated LLINs across African countries.


Asunto(s)
Anopheles , Antimaláricos , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Piretrinas , Animales , Anopheles/genética , Antimaláricos/farmacología , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Kenia , Malaria/prevención & control , Mosquitos Vectores/genética , Patología Molecular , Piretrinas/farmacología
6.
PLoS Genet ; 17(1): e1009253, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476334

RESUMEN

Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Côte d'Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions.


Asunto(s)
Acetilcolinesterasa/genética , Resistencia a los Insecticidas/genética , Malaria/genética , Malaria/transmisión , África Occidental , Animales , Anopheles/efectos de los fármacos , Anopheles/genética , Anopheles/parasitología , Variaciones en el Número de Copia de ADN/genética , Genes Duplicados/genética , Introgresión Genética/genética , Humanos , Insecticidas/efectos adversos , Malaria/parasitología , Malaria/prevención & control , Mosquitos Vectores/genética , Compuestos Organotiofosforados/efectos adversos , Compuestos Organotiofosforados/farmacología
7.
Insect Biochem Mol Biol ; 109: 116-127, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30978500

RESUMEN

Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze the addition of UDP-sugars to small hydrophobic molecules, turning them into more water-soluble metabolites. While their role in detoxification is well documented for vertebrates, arthropod UGTs have only recently been linked to the detoxification and sequestration of plant toxins and insecticides. The two-spotted spider mite Tetranychus urticae is a generalist herbivore notorious for rapidly developing resistance to insecticides and acaricides. We identified a set of eight UGT genes that were overexpressed in mites upon long-term acclimation or adaptation to a new host plant and/or in mite strains highly resistant to acaricides. Functional expression revealed that they were all catalytically active and that the majority preferred UDP-glucose as activated donor for glycosylation of model substrates. A high-throughput substrate screening of both plant secondary metabolites and pesticides revealed patterns of both substrate specificity and promiscuity. We further selected nine enzyme-substrate combinations for more comprehensive analysis and determined steady-state kinetic parameters. Among others, plant metabolites such as capsaicin and several flavonoids were shown to be glycosylated. The acaricide abamectin was also glycosylated by two UGTs and one of these was also overexpressed in an abamectin resistant strain. Our study corroborates the potential role of T. urticae UGTs in detoxification of both synthetic and natural xenobiotic compounds and paves the way for rapid substrate screening of arthropod UGTs.


Asunto(s)
Acaricidas/metabolismo , Expresión Génica , Glicosiltransferasas/química , Glicosiltransferasas/genética , Tetranychidae/química , Tetranychidae/genética , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Escherichia coli/genética , Transferencia de Gen Horizontal , Herbivoria , Cinética , Fase II de la Desintoxicación Metabólica , Microorganismos Modificados Genéticamente/genética , Filogenia , Especificidad por Sustrato , Uridina Difosfato , Xenobióticos/metabolismo
8.
PLoS One ; 14(4): e0215669, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31002694

RESUMEN

The Anopheles gambiae sensu lato species complex consists of a number of cryptic species with different habitats and behaviours. These morphologically indistinct species are identified by chromosome banding. Several molecular diagnostic techniques for distinguishing between An. coluzzii and An. gambiae are still under improvement. Although, the current SINE method for identification between An. coluzzii and An. gambiae works reliably, this study describes a refinement of the SINE method to increase sensitivity for identification of An. coluzzii, An. gambiae and An. arabiensis based on amplicon dissociation curve characteristics. Field-collected samples, laboratory-reared colonies and crossed specimens of the two species were used for the design of the protocol. An. gambiae, An. coluzzii, and hybrids of the two species were sampled from Ghana and An. arabiensis from Kenya. Samples were first characterised using conventional SINE PCR method, and further assayed using SYBR green, an intercalating fluorescent dye. The three species and hybrids were clearly differentiated using the melting temperature of the dissociation curves, with derivative peaks at 72°C for An. arabiensis, 75°C for An. gambiae and 86°C for An. coluzzii. The hybrids (An. gambiae / An. coluzzii) showed both peaks. This work is the first to describe a SYBR green real time PCR method for the characterization of An. arabiensis, An. gambiae and An. coluzzii and was purposely designed for basic melt-curve analysis (rather than high-resolution melt-curve) to allow it to be used on a wide range of real-time PCR machines.


Asunto(s)
Anopheles/genética , Malaria/genética , Técnicas de Diagnóstico Molecular/métodos , Mosquitos Vectores/genética , Reacción en Cadena de la Polimerasa/métodos , Animales , Anopheles/clasificación , Anopheles/parasitología , Benzotiazoles , ADN/química , ADN/genética , Diaminas , Colorantes Fluorescentes/química , Ghana , Kenia , Malaria/diagnóstico , Malaria/parasitología , Mosquitos Vectores/parasitología , Compuestos Orgánicos/química , Quinolinas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Especificidad de la Especie
9.
Malar J ; 17(1): 412, 2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30400885

RESUMEN

BACKGROUND: Mutations in the voltage-gated sodium channel at codon 1014 confer knock-down resistance (kdr) to pyrethroids in a wide range of insects. Anopheles gambiae exhibits two mutant alleles at codon 1014, serine and phenylalanine; and both are now widespread across Africa. Existing screening methods only allow for one resistant allele to be detected per assay. A new locked nucleic acid (LNA) qPCR assay was developed for the simultaneous detection of both mutant alleles and the wild type allele in a single assay. This tri-allelic detection assay was assessed as part of a study of the insecticide resistance in An. gambiae sensu stricto (s.s.) in the previously un-sampled area of Nord Ubangi, Democratic Republic of the Congo. METHODS: Samples from three sites were tested for insecticide susceptibility using WHO bioassays, with and without the synergist PBO preceding pyrethroid exposures, and were subsequently analysed for frequency and resistance-association of the Vgsc-1014 and Vgsc-N1575Y mutations. Results from the LNA-kdr 1014 assay were compared to results from standard TaqMan-kdr assays. RESULTS: Anopheles gambiae sensu lato (s.l.) was by far the predominant vector captured (84%), with only low frequencies of Anopheles funestus s.l. (9%) detected in Nord Ubangi. Molecular identification found An. gambiae s.s. to be the principal vector (99%) although Anopheles coluzzii was detected at very low frequency. Anopheles gambiae were susceptible to the carbamate insecticide bendiocarb, but resistant to DDT and to the pyrethroids permethrin and deltamethrin. Susceptibility to both pyrethroids was partially restored with prior exposure to PBO suggesting likely involvement of metabolic resistance. Anopheles gambiae s.s. was homozygous for kdr resistant alleles with both the L1014F and L1014S mutations present, and the N1575Y polymorphism was present at low frequency. The LNA-kdr assay simultaneously detected both resistant alleles and gave results entirely consistent with those from the two TaqMan-kdr assays. CONCLUSION: This study provides rare data on insecticide resistance and mechanisms in Anopheles from the centre of Africa, with the first detection of N1575Y. Nord Ubangi populations of An. gambiae s.s. show insecticide resistance mediated by both metabolic mechanisms and Vgsc mutations. The LNA-kdr assay is particularly suitable for use in populations in which both 1014S and 1014F kdr alleles co-occur and provides robust results, with higher throughput and at a quarter of the cost of TaqMan assays.


Asunto(s)
Anopheles/efectos de los fármacos , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mosquitos Vectores/efectos de los fármacos , Tasa de Mutación , Reacción en Cadena de la Polimerasa/métodos , Animales , Anopheles/genética , República Democrática del Congo , Femenino , Mosquitos Vectores/genética
10.
PLoS Negl Trop Dis ; 11(4): e0005533, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28394886

RESUMEN

BACKGROUND: Aedes albopictus is one of the most invasive human disease vectors. Its control has been largely based on insecticides, such as the larvicide temephos. Temephos resistance has been associated with the up-regulation, through gene amplification, of two carboxylesterase (CCE) genes closely linked on the genome, capable of sequestering and metabolizing temephos oxon, the activated form of temephos. PRINCIPAL FINDINGS: Here, we investigated the occurrence, geographical distribution and origin of the CCE amplicon in Ae. albopictus populations from several geographical regions worldwide. The haplotypic diversity at the CCEae3a locus revealed high polymorphism, while phylogenetic analysis showed an absence of correlation between haplotype similarity and geographic origin. Two types of esterase amplifications were found, in two locations only (Athens and Florida): one, previously described, results in the amplification of both CCEae3a and CCEae6a; the second is being described for the first time and results in the amplification of CCEae3a only. The two amplification events are independent, as confirmed by sequence analysis. All individuals from Athens and Florida carrying the CCEae3a-CCEae6a co-amplicon share a common haplotype, indicating a single amplification event, which spread between the two countries. SIGNIFICANCE: The importance of passive transportation of disease vectors, including individuals carrying resistance mechanisms, is discussed in the light of efficient and sustainable vector control strategies.


Asunto(s)
Aedes/genética , Carboxilesterasa/genética , Resistencia a los Insecticidas/genética , Insecticidas , Temefós , Aedes/enzimología , Animales , Amplificación de Genes , Perfilación de la Expresión Génica , Genes de Insecto , Insectos Vectores/genética , Larva , Control de Mosquitos , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...