Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 22264, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335303

RESUMEN

It is generally believed that earthquakes occur when faults weaken with increasing slip rates. An important factor contributing to this phenomenon is the faults' dynamic friction, which may be reduced during earthquakes with high slip rates, a process known as slip-rate weakening. It has been hypothesized that the weakening phenomenon during fault slip may be activated by thermal pressurization of pores' fluid and flash heating, a microscopic phenomenon in which heat is generated at asperity contacts due to high shear slip rates. Due to low thermal conductivity of rock, the heat generated at the contact points or surfaces cannot diffuse fast enough, thus concentrating at the contacts, increasing the local contact temperature, and reducing its frictional shear strength. We report the results of what we believe to be the first molecular scale study of the decay of the interfacial friction force in rock, observed in experiemntal studies and attributed to flash heating. The magnitude of the reduction in the shear stress and the local friction coefficients have been computed over a wide range of shear velocities V. The molecular simulations indicate that as the interfacial temperature increases, bonds between the atoms begin to break, giving rise to molecular-scale fracture that eventually produces the flash heating effect. The frequency of flash heating events increases with increasing sliding velocity, leaving increasingly shorter times for the material to relax, hence contributing to the increased interfacial temperature. If the material is thin, the heat quickly diffuses away from the interface, resulting in sharp decrease in the temperature immediately after flash heating. The rate of heat transfer is reduced significantly with increasing thickness, keeping most of the heat close to the interface and producing weakened material. The weakening behavior is demonstrated by computing the stress-strain diagram. For small strain rates there the frictional stress is essentially independent of the materials' thickness. As the strain rate increases, however, the dependence becomes stronger. Specifically, the stress-strain diagrams at lower velocities V manifest a pronounced strength decrease over small distances, whereas they exhibit progressive increase in the shear stress at higher V, which is reminiscent of a transition from ductile behavior at high velocities to brittle response at low velocities.

2.
J Chem Phys ; 148(19): 194305, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-30307193

RESUMEN

Protein folding in confined media has attracted wide attention over the past 15 years due to its importance to both in vivo and in vitro applications. It is generally believed that protein stability increases by decreasing the size of the confining medium, if the medium's walls are repulsive, and that the maximum folding temperature in confinement is in a pore whose size D 0 is only slightly larger than the smallest dimension of a protein's folded state. Until recently, the stability of proteins in pores with a size very close to that of the folded state has not received the attention it deserves. In a previous paper [L. Javidpour and M. Sahimi, J. Chem. Phys. 135, 125101 (2011)], we showed that, contrary to the current theoretical predictions, the maximum folding temperature occurs in larger pores for smaller α-helices. Moreover, in very tight pores, the free energy surface becomes rough, giving rise to a new barrier for protein folding close to the unfolded state. In contrast to unbounded domains, in small nanopores proteins with an α-helical native state that contain the ß structures are entropically stabilized implying that folding rates decrease notably and that the free energy surface becomes rougher. In view of the potential significance of such results to interpretation of many sets of experimental data that could not be explained by the current theories, particularly the reported anomalously low rates of folding and the importance of entropic effects on proteins' misfolded states in highly confined environments, we address the following question in the present paper: To what extent the geometry of a confined medium affects the stability and folding rates of proteins? Using millisecond-long molecular dynamics simulations, we study the problem in three types of confining media, namely, cylindrical and slit pores and spherical cavities. Most importantly, we find that the prediction of the previous theories that the dependence of the maximum folding temperature T f on the size D of a confined medium occurs in larger media for larger proteins is correct only in spherical geometry, whereas the opposite is true in the two other geometries that we study. Also studied is the effect of the strength of the interaction between the confined media's walls and the proteins. If the walls are only weakly or moderately attractive, a complex behavior emerges that depends on the size of the confining medium.


Asunto(s)
Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas/química , Simulación de Dinámica Molecular , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...