Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biophys J ; 123(17): 2860-2868, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38600698

RESUMEN

The micropipette-aspiration technique is commonly used in the field of mechanobiology, offering a variety of measurement types. To extract biophysical parameters from the experiments, numerical analysis is required. Although previous works have developed techniques for the partial automation of these analyses, these approaches are relatively time consuming for the researchers. In this article, we describe the development and application of an artificial-intelligence tool for the completely automatic analysis of micropipette-aspiration experiments. The use of this tool is compared with previous methods and the impressive reduction in the time required for these analyses is discussed. The new tool opens new possibilities for the micropipette-aspiration technique by enabling dealing with large numbers of experiments and real-time measurements.


Asunto(s)
Inteligencia Artificial , Succión
2.
Expert Rev Mol Med ; 24: e35, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36111609

RESUMEN

Ageing is interrelated with the development of immunosenescence. This article focuses on one of the cell sets of the adaptive immune system, T cells, and provides a review of the known changes in T cells associated with ageing. Such fundamental changes affect both cell molecular content and internal ordering. However, acquiring a complete description of the changes at these levels would require extensive measurements of parameters and, furthermore, important fine details of the internal ordering that may be difficult to detect. Therefore, an alternative approach for the characterisation of cells consists of the performance of physical measurements of the whole cell, such as deformability measurements or migration measurements: the physical parameters, complementing the commonly used chemical biomarkers, may contribute to a better understanding of the evolution of T-cell states during ageing. Mechanical measurements, among other biophysical measurements, have the advantage of their relative simplicity: one single parameter agglutinates the complex effects of the variety of changes that gradually appear in cells during ageing.


Asunto(s)
Inmunosenescencia , Linfocitos T , Envejecimiento , Biomarcadores , Humanos
3.
Immunology ; 167(4): 622-639, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054660

RESUMEN

Age-associated changes in T-cell function play a central role in immunosenescence. The role of aging in the decreased T-cell repertoire, primarily because of thymic involution, has been extensively studied. However, increasing evidence indicates that aging also modulates the mechanical properties of cells and the internal ordering of diverse cell components. Cellular functions are generally dictated by the biophysical phenotype of cells, which itself is also tightly regulated at the molecular level. Based on previous evidence suggesting that the relative nuclear size contributes to variations of T-cell stiffness, here we examined whether age-associated changes in T-cell migration are dictated by biophysical parameters, in part through nuclear cytoskeleton organization and cell deformability. In this study, we first performed longitudinal analyses of a repertoire of 111 functional, biophysical and biomolecular features of the nucleus and cytoskeleton of mice CD4+ and CD8+ T cells, in both naive and memory state. Focusing on the pairwise correlations, we found that age-related changes in nuclear architecture and internal ordering were correlated with T-cell stiffening and declined interstitial migration. A similarity analysis confirmed that cell-to-cell variation was a direct result of the aging process and we applied regression models to identify biomarkers that can accurately estimate individuals' age. Finally, we propose a biophysical model for a comprehensive understanding of the results: aging involves an evolution of the relative nuclear size, in part through DNA-hypomethylation and nuclear lamin B1, which implies an increased cell stiffness, thus inducing a decline in cell migration.


Asunto(s)
Linfocitos T CD8-positivos , Inmunosenescencia , Ratones , Animales , Timo/fisiología , Linfocitos T CD4-Positivos , Envejecimiento
4.
Mech Ageing Dev ; 207: 111722, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35961414

RESUMEN

Mitochondrial DNA sequences were found inserted in the nuclear genome of mouse peritoneal T lymphocytes that increased progressively with aging. These insertions were preferentially located at the pericentromeric heterochromatin. In the same individuals, binucleated T-cells with micronuclei showed a significantly increased frequency associated with age. Most of them were positive for centromere sequences, reflecting the loss of chromatids or whole chromosomes. The proliferative capacity of T lymphocytes decreased with age as well as the glutathione reductase activity, whereas the oxidized glutathione and malondialdehyde concentrations exhibited a significant increase. These results may point to a common process that provides insights for a new approach to understanding immunosenescence. We propose a novel mechanism in which mitochondrial fragments, originated by the increased oxidative stress status during aging, accumulate inside the nuclear genome of T lymphocytes in a time-dependent way. The primary entrance of mitochondrial fragments at the pericentromeric regions may compromise chromosome segregation, causing genetic loss that leads to micronuclei formation, rendering aneuploid cells with reduced proliferation capacity, one of the hallmark of immunosenescence. Future experiments deciphering the mechanistic basis of this phenomenon are needed.


Asunto(s)
ADN Mitocondrial , Inmunosenescencia , Animales , Segregación Cromosómica , ADN Mitocondrial/genética , Disulfuro de Glutatión/genética , Glutatión Reductasa/genética , Heterocromatina , Malondialdehído , Ratones
5.
Molecules ; 26(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806736

RESUMEN

The prominence of spider silk as a hallmark in biomimetics relies not only on its unrivalled mechanical properties, but also on how these properties are the result of a set of original design principles. In this sense, the study of spider silk summarizes most of the main topics relevant to the field and, consequently, offers a nice example on how these topics could be considered in other biomimetic systems. This review is intended to present a selection of some of the essential design principles that underlie the singular microstructure of major ampullate gland silk, as well as to show how the interplay between them leads to the outstanding tensile behavior of spider silk. Following this rationale, the mechanical behavior of the material is analyzed in detail and connected with its main microstructural features, specifically with those derived from the semicrystalline organization of the fibers. Establishing the relationship between mechanical properties and microstructure in spider silk not only offers a vivid image of the paths explored by nature in the search for high performance materials, but is also a valuable guide for the development of new artificial fibers inspired in their natural counterparts.


Asunto(s)
Materiales Biomiméticos/química , Seda/química , Arañas , Estrés Mecánico , Resistencia a la Tracción , Animales
6.
Adv Sci (Weinh) ; 7(12): 1902933, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32596106

RESUMEN

Reactive oxygen species (ROS), a group of oxygen derived radicals and derivatives, can induce cancer cell death via elevated oxidative stress. A spatiotemporal approach with safe and deep-tissue penetration capabilities to elevate the intracellular ROS level is highly desirable for precise cancer treatment. Here, a mechanical-thermal induction therapy (MTIT) strategy is developed for a programmable increase of ROS levels in cancer cells via assembly of magnetic nanocubes integrated with alternating magnetic fields. The magneto-based mechanical and thermal stimuli can disrupt the lysosomes, which sequentially induce the dysfunction of mitochondria. Importantly, intracellular ROS concentrations are responsive to the magneto-triggers and play a key role for synergistic cancer treatment. In vivo experiments reveal the effectiveness of MTIT for efficient eradication of glioma and breast cancer. By remote control of the force and heat using magnetic nanocubes, MTIT is a promising physical approach to trigger the biochemical responses for precise cancer treatment.

7.
Soft Matter ; 16(24): 5669-5678, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32519732

RESUMEN

Deformability and internal ordering are key features related to cell function, particularly critical for cells that routinely undergo large deformations, like T cells during extravasation and migration. In the measurement of cell deformability, a considerable variability is typically obtained, masking the identification of possible interrelationships between deformability, internal ordering and cell function. We report the development of a single-cell methodology that combines measurements of living-cell deformability, using micropipette aspiration, and three-dimensional confocal analysis of the nucleus and cytoskeleton. We show that this single-cell approach can serve as a powerful tool to identify appropriate parameters that characterize deformability within a population of cells, not readably discernable in population-averaged data. By applying this single-cell methodology to mouse CD4+ T cells, our results demonstrate that the relative size of the nucleus, better than other geometrical or cytoskeletal features, effectively determines the overall deformability of the cells within the population.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Modelos Biológicos , Animales , Fenómenos Biofísicos , Núcleo Celular , Dimetilpolisiloxanos , Módulo de Elasticidad , Femenino , Fluorescencia , Ratones Endogámicos ICR , Microscopía Confocal , Análisis de la Célula Individual , Viscosidad
8.
Materials (Basel) ; 13(7)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235578

RESUMEN

Polyacrylamide hydrogels are interesting materials for studying cells and cell-material interactions, thanks to the possibility of precisely adjusting their stiffness, shear modulus and porosity during synthesis, and to the feasibility of processing and manufacturing them towards structures and devices with controlled morphology and topography. In this study a novel approach, related to the processing of polyacrylamide hydrogels using soft-lithography and employing microstructured templates, is presented. The main novelty relies on the design and manufacturing processes used for achieving the microstructured templates, which are transferred by soft-lithography, with remarkable level of detail, to the polyacrylamide hydrogels. The conceived process is demonstrated by patterning polyacrylamide substrates with a set of vascular-like and parenchymal-like textures, for controlling cell populations. Final culture of amoeboid cells, whose dynamics is affected by the polyacrylamide patterns, provides a preliminary validation of the described strategy and helps to discuss its potentials.

9.
Small ; 16(3): e1905424, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31867877

RESUMEN

In cells, mechanical forces play a key role in impacting cell behaviors, including adhesion, differentiation, migration, and death. Herein, a 20 nm mitochondria-targeted zinc-doped iron oxide nanocube is designed as a nanospinner to exert mechanical forces under a rotating magnetic field (RMF) at 15 Hz and 40 mT to fight against cancer. The nanospinners can efficiently target the mitochondria of cancer cells. By means of the RMF, the nanocubes assemble in alignment with the external field and produce a localized mechanical force to impair the cancer cells. Both in vitro and in vivo studies show that the nanospinners can damage the cancer cells and reduce the brain tumor growth rate after the application of the RMF. This nanoplatform provides an effective magnetomechanical approach to treat deep-seated tumors in a spatiotemporal fashion.


Asunto(s)
Magnetismo , Mitocondrias/metabolismo , Nanotecnología , Neoplasias/terapia , Línea Celular Tumoral , Linaje de la Célula , Humanos , Fenómenos Mecánicos , Neoplasias/patología
10.
J Mech Behav Biomed Mater ; 95: 103-115, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30986755

RESUMEN

A comparative analysis of T-lymphocyte mechanical data obtained from Micropipette Aspiration (MPA) and Atomic Force Microscopy (AFM) is presented. Results obtained by fitting the experimental data to simple Hertz and Theret models led to non-Gaussian distributions and significantly different values of the elastic moduli obtained by both techniques. The use of more refined models, taking into account the finite size of cells (simplified double contact and Zhou models) reduces the differences in the values calculated for the elastic moduli. Several possible sources for the discrepancy between the techniques are considered. The analysis suggests that the local nature of AFM measurements compared with the more general character of MPA measurements probably contributed to the differences observed.


Asunto(s)
Ensayo de Materiales/métodos , Fenómenos Mecánicos , Microscopía de Fuerza Atómica , Microtecnología/instrumentación , Linfocitos T/citología , Animales , Adhesión Celular , Citoesqueleto/metabolismo , Módulo de Elasticidad , Femenino , Ensayo de Materiales/instrumentación , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA