Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Malar J ; 23(1): 250, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164725

RESUMEN

BACKGROUND: Pyrethroid resistance is one of the major threats for effectiveness of insecticide-treated bed nets (ITNs) in malaria vector control. Genotyping of mutations in the voltage gated sodium channel (VGSC) gene is widely used to easily assess the evolution and spread of pyrethroid target-site resistance among malaria vectors. L1014F and L1014S substitutions are the most common and best characterized VGSC mutations in major African malaria vector species of the Anopheles gambiae complex. Recently, an additional substitution involved in pyrethroid resistance, i.e. V402L, has been detected in Anopheles coluzzii from West Africa lacking any other resistance alleles at locus 1014. The evolution of target-site resistance mutations L1014F/S and V402L was monitored in An. coluzzii and Anopheles arabiensis specimens from a Burkina Faso village over a 10-year range after the massive ITN scale-up started in 2010. METHODS: Anopheles coluzzii (N = 300) and An. arabiensis (N = 362) specimens collected both indoors and outdoors by different methods (pyrethrum spray catch, sticky resting box and human landing collections) in 2011, 2015 and 2020 at Goden village were genotyped by TaqMan assays and sequencing for the three target site resistance mutations; allele frequencies were statistically investigated over the years. RESULTS: A divergent trend in resistant allele frequencies was observed in the two species: 1014F decreased in An. coluzzii (from 0.76 to 0.52) but increased in An. arabiensis (from 0.18 to 0.70); 1014S occurred only in An. arabiensis and slightly decreased over time (from 0.33 to 0.23); 402L increased in An. coluzzii (from 0.15 to 0.48) and was found for the first time in one An. arabiensis specimen. In 2020 the co-occurrence of different resistance alleles reached 43% in An. coluzzii (alleles 410L and 1014F) and 32% in An. arabiensis (alleles 1014F and 1014S). CONCLUSIONS: Overall, an increasing level of target-site resistance was observed among the populations with only 1% of the two malaria vector species being wild type at both loci, 1014 and 402, in 2020. This, together with the co-occurrence of different mutations in the same specimens, calls for future investigations on the possible synergism between resistance alleles and their phenotype to implement local tailored intervention strategies.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Insecticidas , Mutación , Anopheles/genética , Anopheles/efectos de los fármacos , Animales , Resistencia a los Insecticidas/genética , Burkina Faso , Insecticidas/farmacología , Estudios Longitudinales , Canales de Sodio Activados por Voltaje/genética , Mosquitos Vectores/genética , Mosquitos Vectores/efectos de los fármacos , Piretrinas/farmacología , Femenino
2.
Parasit Vectors ; 16(1): 101, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922855

RESUMEN

BACKGROUND: Mosquito and human behaviour interaction is a key determinant of the maximum level of protection against malaria that can be provided by insecticide-treated nets (ITNs). Nevertheless, scant literature focuses on this interaction, overlooking a fundamental factor for efficient malaria control. This study aims to estimate malaria transmission risk in a Burkina Faso village by integrating vector biting rhythms with some key information about human habits. METHODS: Indoor/outdoor human landing catches were conducted for 16 h (16:00-08:00) during 8 nights (September 2020) in Goden village. A survey about net usage and sleeping patterns was submitted to half the households (October-December 2020). A subsample of collected specimens of Anopheles gambiae sensu lato was molecularly processed for species identification, Plasmodium detection from heads-thoraxes and L1014F pyrethroid-resistance allele genotyping. Hourly mosquito abundance was statistically assessed by GLM/GAM, and the entomological inoculation rate (EIR) was corrected for the actual ITN usage retrieved from the questionnaire. RESULTS: Malaria transmission was mainly driven by Anopheles coluzzii (68.7%) followed by A. arabiensis (26.2%). The overall sporozoite rate was 2% with L1014F estimated frequency of 0.68 (N = 1070 out of 15,201 A. gambiae s.l. collected). No major shift in mosquito biting rhythms in response to ITN or differences between indoor and outdoor catches were detected. Impressive high biting pressure (mean 30.3 mosquitoes/person/hour) was exerted from 20:00 to 06:00 with a peak at 4:00. Human survey revealed that nearly all inhabitants were awake before 20:00 and after 7:00 and at least 8.7% had no access to bednets. Adjusting for anthropological data, the EIR dropped from 6.7 to 1.2 infective bites/person/16 h. In a scenario of full net coverage and accounting only for the human sleeping patterns, the daily malaria transmission risk not targetable by ITNs was 0.69 infective bites. CONCLUSIONS: The high mosquito densities and interplay between human/vector activities means that an estimated 10% of residual malaria transmission cannot be prevented by ITNs in the village. Locally tailored studies, like the current one, are essential to explore the heterogeneity of human exposure to infective bites and, consequently, to instruct the adoption of new vector control tools strengthening individual and community protection.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Humanos , Malaria/epidemiología , Malaria/prevención & control , Anopheles/genética , Burkina Faso/epidemiología , Mosquitos Vectores/fisiología , Control de Mosquitos
3.
Parasit Vectors ; 15(1): 200, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35698211

RESUMEN

BACKGROUND: Some species of drosophilid flies belonging to the genus Phortica feed on ocular secretions of mammals, acting as biological vectors of the zoonotic eyeworm Thelazia callipaeda. This study describes an effective breeding protocol of Phortica variegata and Phortica oldenbergi in insectary conditions. METHODS: Alive gravid flies of P. oldenbergi, P. variegata and Phortica semivirgo were field collected in wooded areas of Lazio region (Italy) and allowed to oviposit singularly to obtain isofamilies. Flies were maintained in ovipots (200 ml) with a plaster-covered bottom to maintain high humidity level inside. Adult feeding was guaranteed by fresh apples and a liquid dietary supplement containing sodium chloride and mucin proteins, while larval development was obtained by Drosophila-like agar feeding medium. The breeding performances of two media were compared: a standard one based on cornmeal flour and an enriched medium based on chestnut flour. All conditions were kept in a climatic chamber with a photoperiod of 14:10 h light:dark, 26 ± 2 °C and 80 ± 10% RH. RESULTS: From a total of 130 field-collected Phortica spp., three generations (i.e. F1 = 783, F2 = 109, F3 = 6) were obtained. Phortica oldenbergi was the species with highest breeding performance, being the only species reaching F3. Chestnut-based feeding medium allowed higher adult production and survival probability in both P. oldenbergi and P. variegata. Adult production/female was promising in both species (P. oldenbergi: 13.5 F1/f; P. variegata: 4.5 F1/f). CONCLUSIONS: This standardized breeding protocol, based on controlled climatic parameters and fly densities, together with the introduction of an enriched chestnut-based feeding medium, allowed to investigate aspects of life history traits of Phortica spp. involved in the transmission of T. callipaeda. Obtaining F3 generation of these species for the first time paved the road for the establishment of stable colonies, an essential requirement for future studies on these vectors in controlled conditions.


Asunto(s)
Drosophilidae , Infecciones Parasitarias del Ojo , Infecciones por Spirurida , Thelazioidea , Animales , Cruzamiento , Drosophila , Femenino , Loa , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA