Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39061924

RESUMEN

Chemotherapy-provoked peripheral neuropathy and its associated affective disorders are important adverse effects in cancer patients, and its treatment is not completely resolved. A recent study reveals a positive interaction between molecular hydrogen (H2) and a heme oxygenase (HO-1) enzyme inducer, cobalt protoporphyrin IX (CoPP), in the inhibition of neuropathic pain provoked by nerve injury. Nevertheless, the efficacy of CoPP co-administered with hydrogen-rich water (HRW) on the allodynia and emotional disorders related to paclitaxel (PTX) administration has not yet been assessed. Using male C57BL/6 mice injected with PTX, we examined the effects of the co-administration of low doses of CoPP and HRW on mechanical and thermal allodynia and anxiodepressive-like behaviors triggered by PTX. Moreover, the impact of this combined treatment on the oxidative stress and inflammation caused by PTX in the amygdala (AMG) and dorsal root ganglia (DRG) were studied. Our results indicated that the antiallodynic actions of the co-administration of CoPP plus HRW are more rapid and higher than those given by each of them when independently administered. This combination inhibited anxiodepressive-like behaviors, the up-regulation of the inflammasome NLRP3 and 4-hydroxynonenal, as well as the high mRNA levels of some inflammatory mediators. This combination also increased the expression of NRF2, HO-1, superoxide dismutase 1, glutathione S-transferase mu 1, and/or the glutamate-cysteine ligase modifier subunit and decreased the protein levels of BACH1 in the DRG and/or AMG. Thus, it shows a positive interaction among HO-1 and H2 systems in controlling PTX-induced neuropathy by modulating inflammation and activating the antioxidant system. This study recommends the co-administration of CoPP plus HRW as an effective treatment for PTX-provoked neuropathy and its linked emotive deficits.

2.
Antioxidants (Basel) ; 12(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38136183

RESUMEN

Patients undergoing chemotherapy with cisplatin (CIS) develop neuropathy in addition to other symptoms such as, anxiety, depression, muscle wasting and body weight loss. This symptomatology greatly weakens patients and may even lead to adjournment of chemotherapy. The protecting actions of molecular hydrogen in many neurological illnesses have been described, but its effect on the functional and emotional deficiencies caused by CIS has not been assessed. In C57BL/6J male and female mice injected with CIS, we examined the impact of the prophylactic treatment with hydrogen-rich water (HRW) on: (i) the tactile and cold allodynia, (ii) the deficits of grip strength and weight loss, (iii) the anxiodepressive-like behaviors and (iv) the inflammatory and oxidative reactions incited by CIS in the dorsal root ganglia (DRG) and prefrontal cortex (PFC). The results demonstrate that the mechanical allodynia and the anxiodepressive-like comportment provoked by CIS were similarly manifested in both sexes, whereas the cold allodynia, grip strength deficits and body weight loss produced by this chemotherapeutic agent were greater in female mice. Nonetheless, the prophylactic treatment with HRW prevented the allodynia and the functional and emotional impairments resulting from CIS in both sexes. This treatment also inhibited the inflammatory and oxidative responses activated by CIS in the DRG and PFC in both sexes, which might explain the therapeutic actions of HRW in male and female mice. In conclusion, this study revealed the plausible use of HRW as a new therapy for the allodynia and physical and mental impairments linked with CIS and its possible mechanism of action.

3.
Antioxidants (Basel) ; 12(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38136204

RESUMEN

The pain-relieving properties of opioids in inflammatory and neuropathic pain are heightened by hydrogen sulfide (H2S). However, whether allodynia and functional and/or emotional impairments related to osteoarthritis (OA) could be reduced by activating δ-opioid receptors (DOR) and the plausible influence of H2S on these actions has not been completely established. In female C57BL/6J mice with OA pain generated via monosodium acetate (MIA), we analyze: (i) the effects of UFP-512 (a DOR agonist), given alone and co-administered with two H2S donors, on the symptoms of allodynia, loss of grip strength (GS), and anxiodepressive-like comportment; (ii) the reversion of UFP-512 actions with naltrindole (a DOR antagonist), and (iii) the impact of UFP-512 on the expression of phosphorylated NF-kB inhibitor alpha (p-IKBα) and the antioxidant enzymes superoxide dismutase 1 (SOD-1) and glutathione sulfur transferase M1 (GSTM1); and the effects of H2S on DOR levels in the dorsal root ganglia (DRG), amygdala (AMG), and hippocampus (HIP) of MIA-injected animals. Results showed that systemic and local administration of UFP-512 dose-dependently diminished the allodynia and loss of GS caused by MIA, whose effects were potentiated by H2S and reversed by naltrindole. UFP-512 also inhibited anxiodepressive-like behaviors, normalized the overexpression of p-IKBα in DRG and HIP, and enhanced the expression of SOD-1 and GSTM1 in DRG, HIP, and/or AMG. Moreover, the increased expression of DOR triggered by H2S might support the improved analgesic actions of UFP-512 co-administered with H2S donors. This study proposes the use of DOR agonists, alone or combined with H2S donors, as a new treatment for OA pain.

4.
Antioxidants (Basel) ; 12(10)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37891874

RESUMEN

Chronic pain caused by persistent inflammation is current in multiple diseases and has a strong negative impact on society. It is commonly associated with several mental illnesses, which can exert a negative influence on pain perception, and needs to be eradicated. Nevertheless, actual therapies are not sufficiently safe and effective. Recent reports demonstrate that the induction of heme oxygenase-1 (HO-1) enzyme produces analgesic effects in animals with osteoarthritis pain and reverses the grip strength loss caused by sciatic nerve crush. In this research, we evaluated the potential use of three new HO-1 inducers, 1m, 1a, and 1b, as well as dimethyl fumarate (DMF), for treating persistent inflammatory pain induced by the subplantar injection of complete Freud's adjuvant and the functional deficits and emotional sickness associated. The modulator role of these treatments on the inflammatory and antioxidant pathways were also assessed. Our findings revealed that repeated treatment, for four days, with 1m, 1a, 1b, or DMF inhibited inflammatory pain, reversed grip strength deficits, and reversed the linked anxious- and depressive-like behaviors, with 1m being the most effective. These treatments also suppressed the up-regulation of the inflammasome NLRP3 and activated the expression of the Nrf2 transcription factor and the HO-1 and superoxide dismutase 1 enzymes in the paw and/or amygdala, thus revealing the anti-inflammatory and antioxidant capacity of these compounds during inflammatory pain. Results suggest the use of 1m, 1a, 1b, and DMF, particularly 1m, as promising therapies for inflammatory pain and the accompanying functional disabilities and emotional diseases.

5.
Antioxidants (Basel) ; 12(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37891937

RESUMEN

Neuropathic pain is a type of pain that persists for a long time and becomes pathological. Additionally, the anxiodepressive disorders derived from neuropathic pain are difficult to palliate with the current treatments and need to be resolved. Then, using male mice with neuropathic pain provoked by chronic constriction of the sciatic nerve (CCI), we analyzed and compared the analgesic actions produced by three new heme oxygenase 1 (HO-1) inducers, 1m, 1b, and 1a, with those performed by dimethyl fumarate (DMF). Their impact on the anxiety- and depressive-like comportments and the expression of the inflammasome NLRP3, Nrf2, and some antioxidant enzymes in the dorsal root ganglia (DRG) and amygdala (AMG) were also investigated. Results revealed that the administration of 1m, 1b, and DMF given orally for four days inhibited the allodynia and hyperalgesia caused by CCI, while 1a merely reduced the mechanical allodynia. However, in the first two days of treatment, the antiallodynic effects produced by 1m were higher than those of 1a and DMF, and its antihyperalgesic actions were greater than those produced by 1b, 1a, and DMF, revealing that 1m was the most effective compound. At four days of treatment, all drugs exerted anxiolytic and antidepressant effects, decreased the NLRP3 levels, and increased/normalized the Nrf2, HO-1, and superoxide dismutase 1 levels in DRG and AMG. Data indicated that the dual modulation of the antioxidant and inflammatory pathways produced by these compounds, especially 1m, is a new promising therapeutic approach for neuropathic pain and related emotional illnesses.

6.
Antioxidants (Basel) ; 12(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37371911

RESUMEN

Hydrogen sulfide (H2S) donors make opioids more effective in inhibiting nociception during inflammatory and neuropathic pain. We examined whether the analgesic, anxiolytic and/or antidepressant actions of the cannabinoid 2 receptor (CB2R) agonist, JWH-133, might be improved by pretreatment with H2S donors, DADS and GYY4137 in mice with sciatic nerve injury-provoked neuropathy (CCI). The reversion of the antinociceptive effects of these treatments with the CB2R antagonist, AM630, and the regulatory actions of H2S in the phosphorylation of NF-κB inhibitor alpha (IKBα) and in the brain-derived neurotrophic factor (BDNF), CB2R, Nrf2 and heme oxygenase 1 (HO-1) levels in prefrontal cortex (PFC), ventral hippocampus (vHIP) and periaqueductal gray matter (PAG), were examined. Data showed that the analgesic effects of JWH-133, systemically and locally administered, were improved by the DADS or GYY4137 pretreatment. The co-treatment of GYY4137 with JWH-133 also stopped anxiodepressive-like activities that concur with neuropathy. Our data likewise showed that both H2S donors normalized the inflammatory (p-IKBα), neurotrophic (BDNF) variations caused by CCI, increased the expression of CB2R and activated the Nrf2/HO-1 antioxidant pathway in PFC, v-HIP and/or PAG of animals with neuropathic pain. In addition, the blockade of the analgesia produced by high doses of DADS and GYY4137 with AM630 indicated the contribution of the endocannabinoid system in the effects of H2S during neuropathic pain, thus supporting the positive interaction between H2S and CB2R. Therefore, this study demonstrates the potential use of CB2R agonists combined with H2S donors as a possible treatment for peripheral nerve injury-caused neuropathic pain and the associated emotional disturbances.

7.
Antioxidants (Basel) ; 11(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36552595

RESUMEN

Chemotherapy-provoked peripheral neuropathy and its linked comorbidities severely reduce the quality of a patient's life. Its therapy is not completely resolved and has become an important clinical challenge. The protective actions of molecular hydrogen (H2) in many neurological disorders have been described, but its effects on memory and the emotional deficits accompanying neuropathic pain induced by chemotherapy remain unknown. In this study, using male mice injected with paclitaxel (PTX), we examined the effects of systemic treatment with hydrogen-rich water (HRW) in: (i) the mechanical and thermal allodynia provoked by PTX and the pathways involved; (ii) the memory deficits, anxiety- and depressive-like behaviors associated with PTX-induced peripheral neuropathy (PIPN); and (iii) the plasticity (p-extracellular signal-regulated protein kinase; p-ERK ½), nociceptive (p-protein kinase B, p-Akt), inflammatory (p-nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha; p-IKBα), and oxidative (4-hydroxynonenal: 4-HNE) alterations provoked by PIPN in the prefrontal cortex (PFC). The results revealed: (1) the antiallodynic actions of HRW administered at one or two times per day during 7 and 3 consecutive days; (2) the participation of Kv7 potassium channels and the Nrf2-heme oxygenase 1-NAD(P)H: quinone oxidoreductase 1 pathway in the painkiller effects of HRW; (3) the inhibition of memory deficits and the anxiodepressive-like behaviors related with PIPN induced by HRW; and (4) the normalization of p-ERK ½, p-Akt and 4-HNE up-regulation and the activation of antioxidant enzymes produced by this treatment in PFC. This study proposes HRW as a possible effective and safe therapy for PIPN and its associated cognitive and emotional deficits.

8.
Antioxidants (Basel) ; 11(11)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36358525

RESUMEN

Chronic inflammatory pain is manifested in many diseases. The potential use of molecular hydrogen (H2) as a new therapy for neurological disorders has been demonstrated. Recent studies prove its analgesic properties in animals with neuropathic pain, but the possible antinociceptive, antidepressant, and/or anxiolytic actions of H2 during persistent inflammatory pain have not been investigated. Therefore, using male mice with chronic inflammatory pain incited by the subplantar injection of complete Freud's adjuvant (CFA), we assessed the actions of hydrogen-rich water (HRW) systemically administered on: (1) the nociceptive responses and affective disorders associated and (2) the oxidative (4-hydroxy-2-nonenal; 4-HNE), inflammatory (phosphorylated-NF-kB inhibitor alpha; p-IKBα), and apoptotic (Bcl-2-like protein 4; BAX) changes provoked by CFA in the paws and amygdala. The role of the antioxidant system in the analgesia induced by HRW systemically and locally administered was also determined. Our results revealed that the intraperitoneal administration of HRW, besides reducing inflammatory pain, also inhibited the depressive- and anxiolytic-like behaviors associated and the over expression of 4-HNE, p-IKBα, and BAX in paws and amygdala. The contribution of the nuclear factor erythroid 2-related factor 2/heme oxygenase 1 and NAD(P)H: quinone oxidoreductase 1 pathway in the analgesic activities of HRW, systemically or locally administered, was also shown. These data revealed the analgesic, antidepressant, and anxiolytic actions of HRW. The protective, anti-inflammatory, and antioxidant qualities of this treatment during inflammatory pain were also demonstrated. Therefore, this study proposes the usage of HRW as a potential therapy for chronic inflammatory pain and linked comorbidities.

9.
Antioxidants (Basel) ; 11(9)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36139900

RESUMEN

Neuropathic pain manifested with allodynia and hyperalgesia usually becomes a chronic condition accompanied with mood disorders. Clinical therapies for neuropathic pain are still unsatisfactory with notable side effects. Recent studies have reported the protective role of molecular hydrogen (H2) in different diseases including neurological disorders, such as Alzheimer's as well as its antidepressant activities in animals with chronic stress. This study explored the effects of treatment with hydrogen-rich water (HRW) in male mice with neuropathic pain induced by the chronic constriction of the sciatic nerve (CCI) and the accompanying affective deficits. The likely pathways implied in the HRW analgesic activity, as well as the interaction between heme oxygenase 1 (HO-1) enzyme and H2 during neuropathic pain were also studied. The results showed: (i) the inhibitory effects of the repetitive treatment with HRW on the allodynia and hyperalgesia provoked by CCI; (ii) the anxiolytic and antidepressant actions of HRW in animals with neuropathic pain; (iii) the contribution of the antioxidant enzymes (HO-1 and NAD(P)H: quinone oxidoreductase 1) and the ATP sensitive potassium channels in the painkiller activities of HRW during neuropathic pain; (iv) a positive interaction between the HO-1 and H2 systems in inhibiting the CCI-induced neuropathy; and (v) the antioxidant, antinociceptive, anti-inflammatory and/or antiapoptotic features of HRW treatment in the dorsal root ganglia and/or amygdala of sciatic nerve-injured mice. This study demonstrates new protective actions of H2 and suggests that treatment with HRW might be an interesting therapeutic strategy for chronic neuropathic pain and its associated mood disorders.

10.
Brain Res Bull ; 188: 169-178, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35952846

RESUMEN

The activation of heme oxygenase 1 (HO-1)/carbon monoxide (CO) inhibits chronic inflammatory pain, but its role in the central nervous system (CNS) is not entirely known. We evaluated whether the treatment with an HO-1 inducer, cobalt protoporphyrin IX (CoPP), or a CO-releasing molecule, tricarbonyldichlororuthenium(II)dimer (CORM-2), modulates the nociceptive, apoptotic and/or oxidative responses provoked by persistent inflammatory pain in the CNS. In C57BL/6 male mice with peripheral inflammation caused by complete Freund's adjuvant (CFA), we assessed the effects of CORM-2 and CoPP on the expression of protein kinase B (Akt), the apoptotic protein BAX, and the antioxidant enzymes HO-1 and NADPH quinone oxidoreductase 1 (NQO1) in the periaqueductal gray matter (PAG), amygdala (AMG), ventral hippocampus (VHPC) and medial septal area (MSA). Our results showed that the increased expression of p-Akt caused by peripheral inflammation in the four analyzed brain areas was reversed by CORM-2 and CoPP therapies. Both treatments also normalized the upregulation of BAX induced by CFA on the VHPC and MSA. Oxidative stress, demonstrated with the decreased expression of HO-1 on the PAG and AMG, was normalized in CORM-2 and CoPP treated animals. CoPP also increased the expression of HO-1 on VHPC, and both treatments up-regulated the NQO1 levels on the PAG of CFA-injected animals. In conclusion, both CORM-2 and CoPP treatments inhibited the nociceptive and apoptotic responses generated by peripheral inflammation and/or potentiated the antioxidant responses in several brain areas revealing the new modulatory effects of these treatments in the CNS of animals with chronic inflammatory pain.


Asunto(s)
Dolor Crónico , Compuestos Organometálicos , Animales , Antioxidantes/metabolismo , Monóxido de Carbono/metabolismo , Sistema Nervioso Central/metabolismo , Dolor Crónico/metabolismo , Hemo-Oxigenasa 1/metabolismo , Inflamación/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Nocicepción , Compuestos Organometálicos/metabolismo , Compuestos Organometálicos/farmacología , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA