Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(31): 16048-16057, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39047167

RESUMEN

A modified Hummer's method was used to synthesize aqueous dispersions of graphene oxide (GO). The morphology, chemical structure, and exfoliation state of GO were analyzed by combining scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The structural and rheological properties of the GO dispersions were studied as a function of GO concentration and pH. Increasing the concentration of GO revealed shorter interparticle distances between GO sheets. This induced a transition from fluid to nematic gel-like structures, as observed by polarized optical microscopy (POM). The Herschel-Bulkley model was used to fit the shear thinning curves and to demonstrate the viscoelastic behavior. Both the yield stress and viscoelastic moduli in the linear viscoelastic regime increased. As pH increases, the color of the aqueous GO dispersions becomes darker, the negative values of the zeta potential increase, the distances between the GO sheets decrease as observed by a slight shift of the correlation peak toward higher values of the scattering vector modulus in small-angle X-ray scattering (SAXS), and the rheological properties (yield stress and viscoelastic moduli in the linear viscoelastic region) decrease. These results can be explained by a change in the morphology of GO related to their hydrophilicity. This work presents relationships between rheological and structural properties of GO sheet dispersions, with particular emphasis on the effects of concentration and pH.

2.
Soft Matter ; 19(31): 5942-5955, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37490024

RESUMEN

In order to get better knowledge of mechanical properties from microscopic to macroscopic scale of biopolymers, viscoelastic bulk properties of aqueous solutions of sodium alginate were studied at different scales by combining macroscopic shear rheology (Hz), diffusing-wave spectroscopy microrheology (kHz-MHz) and Brillouin spectroscopy (GHz). Structural properties were also directly probed by small-angle X-ray scattering (SAXS). The results demonstrate a change from polyelectrolyte behavior to neutral polymer behavior by increasing polymer concentration with the determination of characteristic sizes (persistence length, correlation length). The viscoelastic properties probed at the phonon wavelength much higher than the ones obtained at low frequency reflect the variation of microscopic viscosity. First experiments obtained by metabolic activity assays with mouse embryonic fibroblasts showed biocompatibility of sodium alginate aqueous solutions in the studied range of concentrations (2.5-10 g L-1) and consequently their potential biomedical applications.

3.
PLoS One ; 12(1): e0169866, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28081239

RESUMEN

This study investigated a methodology based on image processing and statistics to characterize and model the deformation upon controlled and uniform magnetic field and the relaxation under zero field of droplets observed in aqueous solutions of sodium alginate incorporating magnetic maghemite nanoparticles stabilized by adsorption of citrate ions. The changes of droplet geometry were statistically analyzed using a new approach based on the data obtained from optical microscopy, image processing, nonlinear regression, evolutionary optimization, analysis of variance and resampling. Image enhancement and then image segmentation (Gaussian mixture modeling) processes were applied to extract features with reliable information of droplets dimensions from optical micrographs. The droplets deformation and relaxation trends were accurately adjusted by the Kohlrausch-Williams-Watts (KWW) function and a mean relaxation time was obtained by fitting the time evolution of geometry parameters. It was found to be proportional to the initial radius of the spherical droplets and was associated to interfacial tension.


Asunto(s)
Ácido Cítrico/química , Compuestos Férricos/química , Campos Magnéticos , Modelos Teóricos , Nanopartículas/química , Estrés Mecánico , Nanopartículas/ultraestructura
4.
Eur Phys J E Soft Matter ; 38(8): 88, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26264396

RESUMEN

We present a structural and a multi-scale rheophysical investigation of magneto-sensitive materials based on biopolymers, namely aqueous solutions of sodium alginate incorporating magnetic maghemite nanoparticles, functionalized with adsorbed negative citrate ions. The large alginate ionic strength impacts the structure and the rheology of these nanocomposites in zero magnetic field. In given physico-chemical conditions, the system is fluid and homogeneous on macroscopic scales while it is diphasic on microscopic ones, containing micro-droplets coming from the demixion of the system. These micro-droplets are liquid and deformable under magnetic field. Their under-field elongation and their zero-field relaxation are directly observed by optical microscopy to determine their interfacial tension, their magnetic susceptibility and their internal viscosity. A structural analysis of the solutions of alginate chains and of the phase-separated mixtures of alginate and nanoparticles by Small Angle Scattering completes the local description of the system.


Asunto(s)
Alginatos/química , Biopolímeros/química , Nanopartículas de Magnetita/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Campos Magnéticos , Nanocompuestos/química , Concentración Osmolar , Reología , Viscosidad
5.
Biophys J ; 102(1): 1-9, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22225792

RESUMEN

Mechanical properties of the extracellular matrix (ECM) play a key role in tissue organization and morphogenesis. Rheological properties of jellyfish ECM (mesoglea) were measured in vivo at the cellular scale by passive microrheology techniques: microbeads were injected in jellyfish ECM and their Brownian motion was recorded to determine the mechanical properties of the surrounding medium. Microrheology results were compared with macrorheological measurements performed with a shear rheometer on slices of jellyfish mesoglea. We found that the ECM behaved as a viscoelastic gel at the macroscopic scale and as a much softer and heterogeneous viscoelastic structure at the microscopic scale. The fibrous architecture of the mesoglea, as observed by differential interference contrast and scanning electron microscopy, was in accord with these scale-dependent mechanical properties. Furthermore, the evolution of the mechanical properties of the ECM during aging was investigated by measuring microrheological properties at different jellyfish sizes. We measured that the ECM in adult jellyfish was locally stiffer than in juvenile ones. We argue that this stiffening is a consequence of local aggregations of fibers occurring gradually during aging of the jellyfish mesoglea and is enhanced by repetitive muscular contractions of the jellyfish.


Asunto(s)
Matriz Extracelular/química , Matriz Extracelular/fisiología , Modelos Biológicos , Escifozoos/química , Escifozoos/fisiología , Animales , Módulo de Elasticidad , Matriz Extracelular/ultraestructura , Escifozoos/ultraestructura , Viscosidad
6.
J Colloid Interface Sci ; 328(2): 278-87, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18845304

RESUMEN

Micelle formation was followed by micro-DSC and rheology for aqueous solutions of two copolymers of PEO-PPO-PEO, the Pluronic F127 (from BASF) and the EG56 (from PolymerExpert), a branched copolymer built with three chains of F127 type. It is shown that micellization is endothermic and that, for both polymers, the enthalpy of formation/melting is proportional to total concentration. The rheology of the solutions was carefully analyzed, before gelation for F127, and it reveals firstly the progressive changes of solubility of the unimers (decease of relative solution viscosity), followed by micelle formation over a 10 degrees C range. In this range, the micelle concentration dependence on temperature was deduced from enthalpy measurements and the corresponding volume fractions were derived. Viscosity was interpreted within the framework of well-known theories for hard sphere suspensions (Krieger-Dougherty or Quemada) based on an analogy between micelles and nanosized hairy grain suspensions. The gel state is achieved due to formation of the colloidal crystal. For EG56, the rheology is quite different; as the aggregation increases with temperature, a progression is observed from Newtonian to visco-elastic liquid. The characteristic frequency, defined by the relation G(') = G(''), for EG56 varies with temperature and the corresponding times increase by two orders of magnitude according to an Arrhenius law. The frequency dependence of G(') and G('') at different temperatures can be superposed with a horizontal shift factor and a small amplitude adjustment. There is no elastic solid formation in this case. The "gelation" of these two copolymers is compared to the physical gelation of cold-set gels (gelatin).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA