Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36839949

RESUMEN

Neuronal loss is the ultimate pathophysiologic event in central nervous system (CNS) diseases and replacing these neurons is one of the most significant challenges in regenerative medicine. Providing a suitable microenvironment for new neuron engraftment, proliferation, and synapse formation is a primary goal for 3D bioprinting. Among the various biomaterials, gelatin methacrylate (GelMA) stands out due to its Arg-Gly-Asp (RGD) domains, which assure its biocompatibility and degradation under physiological conditions. This work aimed to produce different GelMA-based bioink compositions, verify their mechanical and biological properties, and evaluate their ability to support neurogenesis. We evaluated four different GelMA-based bioink compositions; however, when it came to their biological properties, incorporating extracellular matrix components, such as GeltrexTM, was essential to ensure human neuroprogenitor cell viability. Finally, GeltrexTM: 8% GelMA (1:1) bioink efficiently maintained human neuroprogenitor cell stemness and supported neuronal differentiation. Interestingly, this bioink composition provides a suitable environment for murine astrocytes to de-differentiate into neural stem cells and give rise to MAP2-positive cells.

2.
Pharmaceutics ; 14(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36297442

RESUMEN

Despite all the progress in the field of liposomes and nanoparticles for applications as drug and gene delivery systems, the specific targeting and immune system escape capabilities of these systems are still limited. Biomimetic nanovesicles emerged as a strategy to overcome these and other limitations associated with synthetic carriers, such as short circulation time, cytotoxicity, and difficulty in crossing biological barriers, since many of the desirable abilities of drug delivery systems are innate characteristics of biological vesicles. Thus, the question arises: would biomimetic nanovesicles be responsible for addressing these advances? It is currently known that biomimetic nanovesicles (BNV) can combine the intrinsic advantages of natural materials with the well-known production methods and controllability of synthetic systems. Besides, the development of the biotechnology and nanotechnology fields has provided a better understanding of the functionalities of biological vesicles and the means for the design and production of biomimetic nanovesicles (BNV). Based on this, this work will focus on tracking the main research on biomimetic nanovesicles (BNV) applied as drug and gene delivery systems, and for vaccines applications. In addition, it will describe the different sources of natural vesicles, the technical perspectives on obtaining them, and the possibility of their hybridization with synthetic liposomes.

3.
Oncotarget ; 8(70): 114698-114709, 2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29383113

RESUMEN

HSP70 connects multiple signaling pathways that work synergistically to protect tumor cells from death by proteotoxic stress and represents a possible target to establish a new approach for multiple myeloma treatment. Therefore, bioluminescent cell lines RPMI8226-LUC-PURO and U266-LUC-PURO were treated with HSP70 (VER155008) and/or proteasome (bortezomib) inhibitors and immunodeficient mice were used for subcutaneous xenograft models to evaluate tumor growth reduction and tumor growth inhibition after treatment. Bioluminescence imaging was used to follow tumor response. Treatment with bortezomib showed ∼60% of late apoptosis in RPMI8226-LUC-PURO (without additional benefit of VER155008 in this cell line). However, U266-LUC-PURO showed ∼60% of cell death after treatment with VER155008 (alone or with bortezomib). RPMI8226-LUC-PURO xenograft presented tumor reduction by bioluminescence imaging after treatment with bortezomib, VER155008 or drug combination compared to controls. Treatment with bortezomib, alone or combined with VER155008, showed inhibition of tumor growth assessed by bioluminescence imaging after one week in both RPMI8226-LUC-PURO and U266-LUC-PURO cell lines when compared to controls. In conclusion, our study shows that the combination of proteasome and HSP70 inhibitors induced cell death in tumor cells in vitro (late apoptosis induction) and in vivo (inhibition of tumor growth) with special benefit in U266-LUC-PURO, bearing 17p deletion.

4.
Epilepsia ; 49(8): 1348-57, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18363708

RESUMEN

PURPOSE: As reported by several authors, angiotensin II (AngII) is a proinflammatory molecule that stimulates the release of inflammatory cytokines and activates nuclear factor kappaB (NFkappaB), being also associated with the increase of cellular oxidative stress. Its production depends on the activity of the angiotensin converting enzyme (ACE) that hydrolyzes the inactive precursor angiotensin I (AngI) into AngII. It has been suggested that AngII underlies the physiopathological mechanisms of several brain disorders such as stroke, bipolar disorder, schizophrenia, and disease. The aim of the present work was to localize and quantify AngII AT1 and AT2 receptors in the cortex and hippocampus of patients with temporal lobe epilepsy related to mesial temporal sclerosis (MTS) submitted to corticoamygdalohippocampectomy for seizure control. METHOD: Immunohistochemistry, Western blot, and real-time PCR techniques were employed to analyze the expression of these receptors. RESULTS: The results showed an upregulation of AngII AT1 receptor as well as its messenger ribonucleic acid (mRNA) expression in the cortex and hippocampus of patients with MTS. In addition, an increased immunoexpression of AngII AT2 receptors was found only in the hippocampus of these patients with no changes in its mRNA levels. DISCUSSION: These data show, for the first time, changes in components of renin-angiotensin system (RAS) that could be implicated in the physiopathology of MTS.


Asunto(s)
Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Hipocampo/metabolismo , Hipocampo/patología , Sistema Renina-Angiotensina/fisiología , Esclerosis/metabolismo , Esclerosis/patología , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología , Adulto , Angiotensina II/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 2/genética , Renina , Regulación hacia Arriba , Quinasa de Factor Nuclear kappa B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA