Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 127(13): 3000-3019, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36897578

RESUMEN

We used aerosol mass spectrometry coupled with tunable synchrotron photoionization to measure radical and closed-shell species associated with particle formation in premixed flames and during pyrolysis of butane, ethylene, and methane. We analyzed photoionization (PI) spectra for the C7H7 radical to identify the isomers present during particle formation. For the combustion and pyrolysis of all three fuels, the PI spectra can be fit reasonably well with contributions from four radical isomers: benzyl, tropyl, vinylcyclopentadienyl, and o-tolyl. Although there are significant experimental uncertainties in the isomeric speciation of C7H7, the results clearly demonstrate that the isomeric composition of C7H7 strongly depends on the combustion or pyrolysis conditions and the fuel or precursors. Fits to the PI spectra using reference curves for these isomers suggest that all of these isomers may contribute to m/z 91 in butane and methane flames, but only benzyl and vinylcyclopentadienyl contribute to the C7H7 isomer signal in the ethylene flame. Only tropyl and benzyl appear to play a role during pyrolytic particle formation from ethylene, and only tropyl, vinylcyclopentadienyl, and o-tolyl appear to participate during particle formation from butane pyrolysis. There also seems to be a contribution from an isomer with an ionization energy below 7.5 eV for the flames but not for the pyrolysis conditions. Kinetic models with updated and new reactions and rate coefficients for the C7H7 reaction network predict benzyl, tropyl, vinylcyclopentadienyl, and o-tolyl to be the primary C7H7 isomers and predict negligible contributions from other C7H7 isomers. These updated models provide better agreement with the measurements than the original versions of the models but, nonetheless, underpredict the relative concentrations of tropyl, vinylcyclopentadienyl, and o-tolyl in both flames and pyrolysis and overpredict benzyl in pyrolysis. Our results suggest that there are additional important formation pathways for the vinylcyclopentadienyl, tropyl, and o-tolyl radicals and/or loss pathways for the benzyl radical that are currently unaccounted for in the present models.

2.
Phys Chem Chem Phys ; 22(29): 16949-16955, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32672775

RESUMEN

Hydroperoxides from the ozonolysis of alkenes, in addition to Criegee intermediates, have been proposed as an atmospheric source of OH radicals in the absence of sunlight, but have remained largely elusive due to their reactivity. A weak peroxide bond enables facile OH elimination, and subsequent ß-scission can lead to a variety of decomposition products depending on the nature of the peroxide. In this paper we explore this process theoretically for the simplest ketohydroperoxide, hydroperoxyacetaldehyde (HPA), which is believed to be formed in the ozonolysis of ethylene. Despite it being the most stable C2H4O3 species in this reaction scheme, lower in energy than the starting materials by around 100 kcal mol-1, HPA has only been directly observed once in the ozonolysis of ethylene by photoionization mass spectrometry appearance energy. Here we report predictions of the rotational spectrum of HPA conducted in support of microwave spectroscopy experiments. We suggest a new dissociation path from HPA to glyoxal [HOOCH2CHO → HCOCH2O + OH → CHOCHO + H], supported by thermochemical calculations. We encourage the search for glyoxal using complementary experimental methods, and suggest possible future experimental directions. Evidence of glyoxal formation from ethylene ozonolysis might provide evidence of this underappreciated path in an important and long studied reaction system.

3.
J Phys Chem A ; 124(25): 5170-5181, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32437151

RESUMEN

Using chirped and cavity microwave spectroscopies, automated double resonance, new high-speed fitting and deep learning algorithms, and large databases of computed structures, the discharge products of benzene alone, or in combination with molecular oxygen or nitrogen, have been exhaustively characterized between 6.5 and 26 GHz. In total, more than 3300 spectral features were observed; 89% of these, accounting for 97% of the total intensity, have now been assigned to 152 distinct chemical species and 60 of their variants (i.e., isotopic species and vibrationally excited states). Roughly 50 of the products are entirely new or poorly characterized at high resolution, including many heavier by mass than the precursor benzene. These findings provide direct evidence for a rich architecture of two- and three-dimensional carbon and indicate that benzene growth, particularly the formation of ring-chain molecules, occurs facilely under our experimental conditions. The present analysis also illustrates the utility of microwave spectroscopy as a precision tool for complex mixture analysis, irrespective of whether the rotational spectrum of a product species is known a priori or not. From this large quantity of data, for example, it is possible to determine with confidence the relative abundances of different product masses, but more importantly the relative abundances of different isomers with the same mass. The complementary nature of this type of analysis to traditional mass spectrometry is discussed.

4.
J Phys Chem A ; 124(12): 2427-2435, 2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32118434

RESUMEN

The high resolution far-infrared spectrum of trans-butadiene has been reinvestigated by Fourier-transform spectroscopy at two synchrotron radiation facilities, SOLEIL and the Canadian Light Source, at temperatures ranging from 50 to 340 K. Beyond the well-studied bands, two new fundamental bands lying below 1100 cm-1, ν10 and ν24, have been assigned using a combination of cross-correlation (ASAP software) and Loomis-Wood type (LWWa software) diagrams. While the ν24 analysis was rather straightforward, ν10 exhibits obvious signs of a strong perturbation, presumably owing to interaction with the dark ν9 + ν12 state. Effective rotational constants have been derived for both the v10 = 1 and v24 = 1 states. Since only one weak, infrared active fundamental band (ν23) of trans-butadiene remains to be observed at high resolution in the far-infrared, searches for the elusive gauche conformer can now be undertaken with considerably greater confidence in the dense ro-vibrational spectrum of the trans form.

5.
Phys Chem Chem Phys ; 21(33): 18065-18070, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31378792

RESUMEN

Atmospheric aerosols are large clusters of molecules and particulate matter that profoundly affect the Earth's radiation budget and climate. Gas-phase oxidation of volatile organic compounds is thought to play a key role in nucleation and aerosol growth, but remains poorly understood. One reaction proposed to trigger formation of condensable, low volatility organic compounds is that between Criegee intermediates and carboxylic acids to yield hydroperoxide esters. Here we isolate in high yield the simplest hydroperoxide ester, hydroperoxymethyl formate (HOOCH2OCHO), as a secondary product in the ozonolysis of ethylene, and establish by rotational spectroscopy that this ester adopts a nearly-rigid cyclic structure owing to a strong hydrogen bond between the peroxy hydrogen and carbonyl oxygen. Subsequent detection of this ester in the ozonolysis of propylene and isoprene suggests that terminal alkenes readily undergo specific types of second-order oxidation reactions that have been implicated in the formation of atmospheric aerosols.

6.
Rev Sci Instrum ; 90(5): 053104, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31153235

RESUMEN

We describe an instrument which can be used to analyze complex chemical mixtures at high resolution and high sensitivity. Molecules are collisionally cooled with helium gas at cryogenic temperatures (∼4-7 K) and subsequently detected using chirped pulse microwave spectroscopy. Here, we demonstrate three significant improvements to the apparatus relative to an earlier version: (1) extension of its operating range by more than a factor of two, from 12-18 GHz to 12-26 GHz, which allows a much wider range of species to be characterized; (2) improved detection sensitivity owing to the use of cryogenically cooled low-noise amplifiers and protection switches; and (3) a versatile method of sample input that enables analysis of solids, liquids, gases, and solutions, without the need for chemical separation (as demonstrated with a 12-16 GHz spectrum of lemon oil). This instrument can record broadband microwave spectra at comparable sensitivity to high Q cavity spectrometers which use pulsed supersonic jets, but up to 3000 times faster with a modest increase in the sample consumption rate.

7.
J Phys Chem Lett ; 10(8): 1981-1985, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30897904

RESUMEN

Isoprene (2-methyl-1,3-butadiene) is highly abundant in the atmosphere, second only to methane in hydrocarbon emissions. In contrast to the most stable trans rotamer, structural characterization of gauche-isoprene has proven challenging: it is weakly polar, present at the level of only a few percent at room temperature, and structurally complex due to both torsional and methyl tunneling motions. gauche-Isoprene has been observed by two distinct but complementary experimental approaches: chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy coupled with cryogenic buffer gas cooling, and cavity-enhanced FTMW spectroscopy with a pulsed discharge source. Thermal enhancement of the gauche population (from 1.7% to 10.3%) was observed in the cryogenic buffer gas cell when the sample was preheated from 300 to 450 K, demonstrating that high-energy rotamers can be efficiently isolated under our experimental conditions. Rotational parameters for the inversion states (0+/0-) have been determined for the first time, aided by calculations at increasing levels of theoretical sophistication. From this combined analysis, the inversion splitting Δ E and the Fbc Coriolis coupling constant between the two inversion states have been derived.

8.
Phys Chem Chem Phys ; 20(24): 16828-16834, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29892741

RESUMEN

We have developed a method to quantify reaction product ratios using high resolution microwave spectroscopy in a cryogenic buffer gas cell. We demonstrate the power of this method with the study of the ozonolysis of isoprene, CH2[double bond, length as m-dash]C(CH3)-CH[double bond, length as m-dash]CH2, the most abundant, non-methane hydrocarbon emitted into the atmosphere by vegetation. Isoprene is an asymmetric diene, and reacts with O3 at the 1,2 position to produce methyl vinyl ketone (MVK), formaldehyde, and a pair of carbonyl oxides: [CH3CO-CH[double bond, length as m-dash]CH2 + CH2[double bond, length as m-dash]OO] + [CH2[double bond, length as m-dash]O + CH3COO-CH[double bond, length as m-dash]CH2]. Alternatively, O3 could attack at the 3,4 position to produce methacrolein (MACR), formaldehyde, and two carbonyl oxides [CH2[double bond, length as m-dash]C(CH3)-CHO + CH2[double bond, length as m-dash]OO] + [CH2[double bond, length as m-dash]O + CH2[double bond, length as m-dash]C(CH3)-CHOO]. Purified O3 and isoprene were mixed for approximately 10 seconds under dilute (1.5-4% in argon) continuous flow conditions in an alumina tube held at 298 K and 5 Torr. Products exiting the tube were rapidly slowed and cooled within the buffer gas cell by collisions with cryogenic (4-7 K) He. High resolution chirped pulse microwave detection between 12 and 26 GHz was used to achieve highly sensitive (ppb scale), isomer-specific product quantification. We observed a ratio of MACR to MVK of 2.1 ± 0.4 under 1 : 1 ozone to isoprene conditions and 2.1 ± 0.2 under 2 : 1 ozone to isoprene conditions, a finding which is consistent with previous experimental results. Additionally, we discuss relative quantities of formic acid (HCOOH), an isomer of CH2[double bond, length as m-dash]OO, and formaldehyde (CH2[double bond, length as m-dash]O) under varying experimental conditions, and characterize the spectroscopic parameters of the singly-substituted 13C trans-isoprene and 13C anti-periplanar-methacrolein species. This work has the potential to be extended towards a complete branching ratio analysis, as well towards the ability to isolate, identify, and quantify new reactive intermediates in the ozonolysis of alkenes.

9.
J Phys Chem A ; 122(28): 5911-5924, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-29893563

RESUMEN

The nascent steps in the pyrolysis of the lignin components salicylaldehyde ( o-HOC6H4CHO) and catechol ( o-HOC6H4OH) were studied in a set of heated microreactors. The microreactors are small (roughly 1 mm ID × 3 cm long); transit times through the reactors are about 100 µs. Temperatures in the microreactors can be as high as 1600 K, and pressures are typically a few hundred torr. The products of pyrolysis are identified by a combination of photoionization mass spectrometry, photoelectron photoion concidence mass spectroscopy, and matrix isolation infrared spectroscopy. The main pathway by which salicylaldehyde decomposes is a concerted fragmentation: o-HOC6H4CHO (+ M) → H2 + CO + C5H4═C═O (fulveneketene). At temperatures above 1300 K, fulveneketene loses CO to yield a mixture of HC≡C-C≡C-CH3, HC≡C-CH2-C≡CH, and HC≡C-CH═C═CH2. These alkynes decompose to a mixture of radicals (HC≡C-C≡C-CH2 and HC≡C-CH-C≡CH) and H atoms. H-atom chain reactions convert salicylaldehyde to phenol: o-HOC6H4CHO + H → C6H5OH + CO + H. Catechol has similar chemistry to salicylaldehyde. Electrocyclic fragmentation produces water and fulveneketene: o-HOC6H4OH (+ M) → H2O + C5H4═C═O. These findings have implications for the pyrolysis of lignin itself.

10.
J Phys Chem A ; 121(28): 5280-5289, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28661692

RESUMEN

We report the combination of tabletop vacuum ultraviolet photoionization with photoion-photoelectron coincidence spectroscopy for sensitive, isomer-specific detection of nascent products from a pyrolysis microreactor. Results on several molecules demonstrate two essential capabilities that are very straightforward to implement: the ability to differentiate isomers and the ability to distinguish thermal products from dissociative ionization. Here, vacuum ultraviolet light is derived from a commercial tabletop femtosecond laser system, allowing data to be collected at 10 kHz; this high repetition rate is critical for coincidence techniques. The photoion-photoelectron coincidence spectrometer uses the momentum of the ion to identify dissociative ionization events and coincidence techniques to provide a photoelectron spectrum specific to each mass, which is used to distinguish different isomers. We have used this spectrometer to detect the pyrolysis products that result from the thermal cracking of acetaldehyde, cyclohexene, and 2-butanol. The photoion-photoelectron spectrometer can detect and identify organic radicals and reactive intermediates that result from pyrolysis. Direct comparison of laboratory and synchrotron data illustrates the advantages and potential of this approach.

11.
J Phys Chem A ; 121(24): 4658-4677, 2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28517940

RESUMEN

Two methyl esters were examined as models for the pyrolysis of biofuels. Dilute samples (0.06-0.13%) of methyl acetate (CH3COOCH3) and methyl butanoate (CH3CH2CH2COOCH3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis microreactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed microreactor were about 20 Torr and residence times through the reactors were roughly 25-150 µs. Reactor temperatures of 300-1600 K were explored. Decomposition of CH3COOCH3 commences at 1000 K, and the initial products are (CH2═C═O and CH3OH). As the microreactor is heated to 1300 K, a mixture of CH2═C═O and CH3OH, CH3, CH2═O, H, CO, and CO2 appears. The thermal cracking of CH3CH2CH2COOCH3 begins at 800 K with the formation of CH3CH2CH═C═O and CH3OH. By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of CH3CH2CH═C═O, CH3OH, CH3, CH2═O, CO, CO2, CH3CH═CH2, CH2CHCH2, CH2═C═CH2, HCCCH2, CH2═C═C═O, CH2═CH2, HC≡CH, and CH2═C═O. On the basis of the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R-CH2-COOCH3. The lowest-energy fragmentation will be a 4-center elimination of methanol to form the ketene RCH═C═O. At higher temperatures, concerted fragmentation to radicals will ensue to produce a mixture of species: (RCH2 + CO2 + CH3) and (RCH2 + CO + CH2═O + H). Thermal cracking of the ß C-C bond of the methyl ester will generate the radicals (R and H) as well as CH2═C═O + CH2═O. The thermochemistry of methyl acetate and its fragmentation products were obtained via the Active Thermochemical Tables (ATcT) approach, resulting in ΔfH298(CH3COOCH3) = -98.7 ± 0.2 kcal mol-1, ΔfH298(CH3CO2) = -45.7 ± 0.3 kcal mol-1, and ΔfH298(COOCH3) = -38.3 ± 0.4 kcal mol-1.

12.
J Chem Phys ; 145(1): 014305, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27394106

RESUMEN

Cycloheptatrienyl (tropyl) radical, C7H7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C7H7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 µs. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C7H7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize to benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C7H7) radicals but rather only benzyl (C6H5CH2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C6H5CH2, C6H5CD2, C6D5CH2, and C6H5 (13)CH2. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C6H5CD2, C6D5CH2, and C6H5 (13)CH2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).

13.
J Phys Chem A ; 120(14): 2161-72, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-26979134

RESUMEN

Both glycolaldehyde and glyoxal were pyrolyzed in a set of flash-pyrolysis microreactors. The pyrolysis products resulting from CHO-CH2OH and HCO-CHO were detected and identified by vacuum ultraviolet (VUV) photoionization mass spectrometry. Complementary product identification was provided by argon matrix infrared absorption spectroscopy. Pyrolysis pressures in the microreactor were about 100 Torr, and contact times with the microreactors were roughly 100 µs. At 1200 K, the products of glycolaldehyde pyrolysis are H atoms, CO, CH2═O, CH2═C═O, and HCO-CHO. Thermal decomposition of HCO-CHO was studied with pulsed 118.2 nm photoionization mass spectrometry and matrix infrared absorption. Under these conditions, glyoxal undergoes pyrolysis to H atoms and CO. Tunable VUV photoionization mass spectrometry provides a lower bound for the ionization energy (IE)(CHO-CH2OH) ≥ 9.95 ± 0.05 eV. The gas-phase heat of formation of glycolaldehyde was established by a sequence of calorimetric experiments. The experimental result is ΔfH298(CHO-CH2OH) = -75.8 ± 1.3 kcal mol(-1). Fully ab initio, coupled cluster calculations predict ΔfH0(CHO-CH2OH) of -73.1 ± 0.5 kcal mol(-1) and ΔfH298(CHO-CH2OH) of -76.1 ± 0.5 kcal mol(-1). The coupled-cluster singles doubles and noniterative triples correction calculations also lead to a revision of the geometry of CHO-CH2OH. We find that the O-H bond length differs substantially from earlier experimental estimates, due to unusual zero-point contributions to the moments of inertia.


Asunto(s)
Acetaldehído/análogos & derivados , Carbohidratos/química , Glioxal/química , Calor , Acetaldehído/química , Espectrometría de Masas , Espectrofotometría Infrarroja
14.
J Phys Chem A ; 119(51): 12635-47, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26617252

RESUMEN

The thermal decomposition of cyclohexanone (C6H10═O) has been studied in a set of flash-pyrolysis microreactors. Decomposition of the ketone was observed when dilute samples of C6H10═O were heated to 1200 K in a continuous flow microreactor. Pyrolysis products were detected and identified by tunable VUV photoionization mass spectroscopy and by photoionization appearance thresholds. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures were roughly 100 Torr, and contact times with the microreactors were roughly 100 µs. Thermal cracking of cyclohexanone appeared to result from a variety of competing pathways, all of which open roughly simultaneously. Isomerization of cyclohexanone to the enol, cyclohexen-1-ol (C6H9OH), is followed by retro-Diels-Alder cleavage to CH2═CH2 and CH2═C(OH)-CH═CH2. Further isomerization of CH2═C(OH)-CH═CH2 to methyl vinyl ketone (CH3CO-CH═CH2, MVK) was also observed. Photoionization spectra identified both enols, C6H9OH and CH2═C(OH)-CH═CH2, and the ionization threshold of C6H9OH was measured to be 8.2 ± 0.1 eV. Coupled cluster electronic structure calculations were used to establish the energetics of MVK. The heats of formation of MVK and its enol were calculated to be ΔfH298(cis-CH3CO-CH═CH2) = -26.1 ± 0.5 kcal mol(-1) and ΔfH298(s-cis-1-CH2═C(OH)-CH═CH2) = -13.7 ± 0.5 kcal mol(-1). The reaction enthalpy ΔrxnH298(C6H10═O → CH2═CH2 + s-cis-1-CH2═C(OH)-CH═CH2) is 53 ± 1 kcal mol(-1) and ΔrxnH298(C6H10═O → CH2═CH2 + cis-CH3CO-CH═CH2) is 41 ± 1 kcal mol(-1). At 1200 K, the products of cyclohexanone pyrolysis were found to be C6H9OH, CH2═C(OH)-CH═CH2, MVK, CH2CHCH2, CO, CH2═C═O, CH3, CH2═C═CH2, CH2═CH-CH═CH2, CH2═CHCH2CH3, CH2═CH2, and HC≡CH.


Asunto(s)
Ciclohexanonas/química , Calefacción , Calor , Estructura Molecular , Estereoisomerismo
15.
J Chem Phys ; 142(4): 044307, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25637987

RESUMEN

The pyrolysis of the benzyl radical has been studied in a set of heated micro-reactors. A combination of photoionization mass spectrometry (PIMS) and matrix isolation infrared (IR) spectroscopy has been used to identify the decomposition products. Both benzyl bromide and ethyl benzene have been used as precursors of the parent species, C6H5CH2, as well as a set of isotopically labeled radicals: C6H5CD2, C6D5CH2, and C6H5 (13)CH2. The combination of PIMS and IR spectroscopy has been used to identify the earliest pyrolysis products from benzyl radical as: C5H4=C=CH2, H atom, C5H4-C ≡ CH, C5H5, HCCCH2, and HC ≡ CH. Pyrolysis of the C6H5CD2, C6D5CH2, and C6H5 (13)CH2 benzyl radicals produces a set of methyl radicals, cyclopentadienyl radicals, and benzynes that are not predicted by a fulvenallene pathway. Explicit PIMS searches for the cycloheptatrienyl radical were unsuccessful, there is no evidence for the isomerization of benzyl and cycloheptatrienyl radicals: C6H5CH2⇋C7H7. These labeling studies suggest that there must be other thermal decomposition routes for the C6H5CH2 radical that differ from the fulvenallene pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...