Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38015056

RESUMEN

A novel thermophilic strain, designated BP5-C20AT, was isolated from the shallow hydrothermal field of the Panarea island in the Aeolian archipelago close to Sicily, Italy. Cells are motile rods surrounded with a 'toga', Gram-stain-negative and display a straight to curved morphology during the exponential phase. Strain BP5-C20AT is thermophilic (optimum 55 °C), moderately acidophilic (optimum pH 5.6) and halotolerant (optimum 25 g l-1 NaCl). It can use yeast extract, peptone and tryptone. It uses the following carbohydrates: cellobiose, fructose, glucose, maltose, starch, sucrose and xylan. Elemental sulphur is used as an electron acceptor and reduced to hydrogen sulphide. The predominant cellular fatty acid is C16 : 0. Phylogenetic analysis showed that strain BP5-C20AT shared 97.3 % 16S rRNA gene sequence identity with the closest related species Marinitoga lauensis LG1T. The complete genome of strain BP5-C20AT is 2.44 Mb in size with a G+C content of 27.3 mol%. The dDDH and ANI values between the genomes of strains BP5-C20AT and M. lauensis LG1T are 31.0 and 85.70% respectively. Finally, from its physiological, metabolic and genomic characteristics, strain BP5-C20AT (=DSM 112332T=JCM 39183 T) is proposed as representative of a novel species of the genus Marinitoga named Marinitoga aeolica sp. nov. and belonging to the order Petrotogales, in the phylum Thermotogota.


Asunto(s)
Ácidos Grasos , Anaerobiosis , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Italia
2.
Front Microbiol ; 14: 1197823, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37555067

RESUMEN

Serpentinite-hosted systems are amongst the most challenging environments for life on Earth. Serpentinization, a geochemical alteration of exposed ultramafic rock, produces hydrothermal fluids enriched in abiotically derived hydrogen (H2), methane (CH4), and small organic molecules. The hyperalkaline pH of these fluids poses a great challenge for metabolic energy and nutrient acquisition, curbing the cellular membrane potential and limiting electron acceptor, carbon, and phosphorous availability. Nevertheless, serpentinization supports the growth of diverse microbial communities whose metabolic make-up might shed light on the beginning of life on Earth and potentially elsewhere. Here, we outline current hypotheses on metabolic energy production, carbon fixation, and nutrient acquisition in serpentinizing environments. A taxonomic survey is performed for each important metabolic function, highlighting potential key players such as H2 and CH4 cycling Serpentinimonas, Hydrogenophaga, Methanobacteriales, Methanosarcinales, and novel candidate phyla. Methodological biases of the available data and future approaches are discussed.

3.
Front Microbiol ; 14: 1196516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37485525

RESUMEN

The southeastern part of New Caledonia main island (Grande Terre) is the location of a large ophiolitic formation that hosts several hyperalkaline springs discharging high pH (∼11) and warm (<40°C) fluids enriched in methane (CH4) and hydrogen (H2). These waters are produced by the serpentinization of the ultrabasic rock formations. Molecular surveys had previously revealed the prokaryotic diversity of some of these New Caledonian springs, especially from the submarine chimneys of Prony Bay hydrothermal field. Here we investigate the microbial community of hyperalkaline waters from on-land springs and their relationships with elevated concentrations of dissolved H2 (21.1-721.3 µmol/L) and CH4 (153.0-376.6 µmol/L). 16S rRNA gene analyses (metabarcoding and qPCR) provided evidence of abundant and diverse prokaryotic communities inhabiting hyperalkaline fluids at all the collected springs. The abundance of prokaryotes was positively correlated to the H2/CH4 ratio. Prokaryotes consisted mainly of bacteria that use H2 as an energy source, such as microaerophilic Hydrogenophaga/Serpentinimonas (detected in all sources on land) or anaerobic sulfate-reducing Desulfonatronum, which were exclusively found in the most reducing (Eh ref H2 ∼ -700 mV) and the most H2-enriched waters discharging at the intertidal spring of the Bain des Japonais. The relative abundance of a specific group of uncultured Methanosarcinales that thrive in serpentinization-driven ecosystems emitting H2, considered potential H2-consuming methanogens, was positively correlated with CH4 concentrations, and negatively correlated to the relative abundance of methylotrophic Gammaproteobacteria. Firmicutes were also numerous in hyperalkaline waters, and their relative abundance (e.g., Gracilibacter or Dethiobacter) was proportional to the dissolved H2 concentrations, but their role in the H2 budget remains to be assessed. The prokaryotic communities thriving in New Caledonia hyperalkaline waters are similar to those found in other serpentinite-hosted high-pH waters worldwide, such as Lost City (North Atlantic) and The Cedars (California).

4.
Artículo en Inglés | MEDLINE | ID: mdl-36748411

RESUMEN

A novel thermophilic, anaerobic bacterium, strain F1F22T, was isolated from hot spring water collected in northern Tunisia. The cells were non-motile, Gram-negative and helical with hooked ends, 0.5×10-32 µm in size. Growth of the strain was observed at 45-70 °C (optimum, 55 °C), in 0.0-1.0 % (w/v) NaCl (optimum without NaCl) and at pH 6.5-8.5 (optimum, pH 7.5). Yeast extract was required for growth, and the strain grew on glucose, sucrose and maltose. The major fatty acids were C16:0 (40.2 %), iso-C16: 0 (30.2 %) and C16 :0 DMA (14.5 %). The genome consisted of a circular chromosome (2.5 Mb) containing 2672 predicted protein-encoding genes with a G+C content of 43.15 mol %. Based on a comparative 16S rRNA gene sequence analysis, strain F1F22T formed a deeply branching lineage within the phylum Spirochaetota, class Spirochaetia, order Brevinematales, and had only low sequence similarity to other species of the phylum (lower than 83 %). Genome-based analysis of average nucleotide identity and digital DNA-DNA hybridization of strain F1F22T with Treponema caldarium DSM 7334T, Brevinema andersonii ATCC 43811T and Spirochaeta thermophila DSM 6578T showed values between 63.26 and 63.52 %, and between 20 and 25 %. Hence, we propose strain F1F22T as a representative of a novel family (Thermospiraceae fam. nov.), genus and species of Brevinematales: Thermospira aquatica gen. nov., sp. nov. (type strain F1F22T=JCM 31314T=DSM 101182T).


Asunto(s)
Manantiales de Aguas Termales , Manantiales de Aguas Termales/microbiología , Spirochaetales , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Composición de Base , Cloruro de Sodio , Filogenia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Análisis de Secuencia de ADN
5.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36260502

RESUMEN

An anaerobic, hydrogenotrophic methane-producing archaeon was isolated from an alkaline thermal spring (42 °C, pH 9.0) in New Caledonia. This methanogen, designated strain CANT, is alkaliphilic, thermotolerant, with Gram-positive staining non-motile cells. Strain CANT grows autotrophically using hydrogen exclusively as an energy source and carbon dioxide as the sole carbon source (without the requirement of yeast extract or other organic compounds). It grows at 20-45 °C (optimum, 45 °C) and pH 7.3-9.7 (optimum, pH 9.0). NaCl is not required for growth (optimum 0 %) but is tolerated up to 1.5 %. It resists novobiocin, streptomycin and vancomycin but is inhibited by ampicillin and penicillin, among other antibiotics. The genome consists of a circular chromosome (2.2 Mb) containing 2126 predicted protein-encoding genes with a G+C content of 36.4 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain CANT is a member of the genus Methanobacterium, most closely related to the alkaliphilic Methanobacterium alcaliphilum WeN4T with 98.5 % 16S rRNA gene sequence identity. The genomes of strain CANT and M. alcaliphilum DSM 3459, sequenced in this study, share 71.6 % average nucleotide identity and 14.0 % digital DNA-DNA hybridization. Therefore, phylogenetic and physiological results indicate that strain CANT represents a novel species, for which the name Methanobacterium alkalithermotolerans sp. nov. is proposed, and strain CANT (=DSM 102889T= JCM 31304T) is assigned as the type strain.


Asunto(s)
Manantiales de Aguas Termales , Methanobacterium , Methanobacterium/genética , ARN Ribosómico 16S/genética , Filogenia , Hidrógeno , Composición de Base , Cloruro de Sodio , Dióxido de Carbono , Vancomicina , Novobiocina , Nueva Caledonia , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Metano , Antibacterianos , Ampicilina , Penicilinas , Estreptomicina , Nucleótidos
6.
Microorganisms ; 9(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201651

RESUMEN

(1) Background: The geothermal spring of La Crouen (New Caledonia) discharges warm (42 °C) alkaline water (pH~9) enriched in dissolved nitrogen with traces of methane, but its microbial diversity has not yet been studied. (2) Methods: Cultivation-dependent and -independent methods (e.g., Illumina sequencing and quantitative PCR based on 16S rRNA gene) were used to describe the prokaryotic diversity of this spring. (3) Results: Prokaryotes were mainly represented by Proteobacteria (57% on average), followed by Cyanobacteria, Chlorofexi, and Candidatus Gracilibacteria (GN02/BD1-5) (each > 5%). Both potential aerobes and anaerobes, as well as mesophilic and thermophilic microorganisms, were identified. Some of them had previously been detected in continental hyperalkaline springs found in serpentinizing environments (The Cedars, Samail, Voltri, and Zambales ophiolites). Gammaproteobacteria, Ca. Gracilibacteria and Thermotogae were significantly more abundant in spring water than in sediments. Potential chemolithotrophs mainly included beta- and gammaproteobacterial genera of sulfate-reducers (Ca. Desulfobacillus), methylotrophs (Methyloversatilis), sulfur-oxidizers (Thiofaba, Thiovirga), or hydrogen-oxidizers (Hydrogenophaga). Methanogens (Methanobacteriales and Methanosarcinales) were the dominant Archaea, as found in serpentinization-driven and deep subsurface ecosystems. A novel alkaliphilic hydrogenotrophic methanogen (strain CAN) belonging to the genus Methanobacterium was isolated, suggesting that hydrogenotrophic methanogenesis occurs at La Crouen.

7.
Artículo en Inglés | MEDLINE | ID: mdl-34003738

RESUMEN

A novel anaerobic, alkaliphilic, mesophilic, Gram-stain-positive, endospore-forming bacterium was isolated from an alkaline thermal spring (42 °C, pH 9.0) in New Caledonia. This bacterium, designated strain LB2T, grew at 25-50 °C (optimum, 37 °C) and pH 8.2-10.8 (optimum, pH 9.5). Added NaCl was not required for growth (optimum, 0-1 %) but was tolerated up to 7 %. Strain LB2T utilized a limited range of substrates, such as peptone, pyruvate, yeast extract and xylose. End products detected from pyruvate fermentation were acetate and formate. Both ferric citrate and thiosulfate were used as electron acceptors. Elemental sulphur, nitrate, nitrite, fumarate, sulphate, sulfite and DMSO were not used as terminal electron acceptors. The two major cellular fatty acids were iso-C15 : 0 and C16 : 0. The genome consists of a circular chromosome (3.7 Mb) containing 3626 predicted protein-encoding genes with a G+C content of 36.2 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the isolate is a member of the family Proteinivoraceae, order Clostridiales within the phylum Firmicutes. Strain LB2T was most closely related to the thermophilic Anaerobranca gottschalkii LBS3T (93.2 % 16S rRNA gene sequence identity). Genome-based analysis of average nucleotide identity and digital DNA-DNA hybridization of strain LB2T with A. gottschalkii LBS3T showed respective values of 70.8 and 13.4 %. Based on phylogenetic, genomic, chemotaxonomic and physiological properties, strain LB2T is proposed to represent the first species of a novel genus, for which the name Alkalicella caledoniensis gen. nov., sp. nov. is proposed (type strain LB2T=DSM 100588T=JCM 30958T).


Asunto(s)
Clostridiales/clasificación , Manantiales de Aguas Termales/microbiología , Filogenia , Anaerobiosis , Bacterias Anaerobias/clasificación , Bacterias Anaerobias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , Nueva Caledonia , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Syst Appl Microbiol ; 44(2): 126175, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33422701

RESUMEN

Two novel anaerobic alkaliphilic strains, designated as LacTT and LacVT, were isolated from the Prony Bay Hydrothermal Field (PBHF, New Caledonia). Cells were motile, Gram-positive, terminal endospore-forming rods, displaying a straight to curved morphology during the exponential phase. Strains LacTT and LacVT were mesophilic (optimum 30°C), moderately alkaliphilic (optimum pH 8.2 and 8.7, respectively) and halotolerant (optimum 2% and 2.5% NaCl, respectively). Both strains were able to ferment yeast extract, peptone and casamino acids, but only strain LacTT could use sugars (glucose, maltose and sucrose). Both strains disproportionated crotonate into acetate and butyrate. Phylogenetic analysis revealed that strains LacTT and LacVT shared 96.4% 16S rRNA gene sequence identity and were most closely related to A. peptidifermentans Z-7036, A. namsaraevii X-07-2 and A. hydrothermalis FatMR1 (95.7%-96.3%). Their genome size was of 3.29Mb for strain LacTT and 3.06Mb for strain LacVT with a G+C content of 36.0 and 33.9mol%, respectively. The ANI value between both strains was 73.2 %. Finally, strains LacTT (=DSM 100337=JCM 30643) and LacVT (=DSM 100017=JCM 30644) are proposed as two novel species of the genus Alkaliphilus, order Clostridiales, phylum Firmicutes, Alkaliphilus serpentinus sp. nov. and Alkaliphilus pronyensis sp. nov., respectively. The genomes of the three Alkaliphilus species isolated from PBHF were consistently detected in the PBHF chimney metagenomes, although at very low abundance, but not significantly in the metagenomes of other serpentinizing systems (marine or terrestrial) worldwide, suggesting they represent indigenous members of the PBHF microbial ecosystem.


Asunto(s)
Bahías , Bacilos Grampositivos Formadores de Endosporas/clasificación , Filogenia , Anaerobiosis , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ecosistema , Bacilos Grampositivos Formadores de Endosporas/aislamiento & purificación , Nueva Caledonia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
Front Microbiol ; 10: 1497, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379757

RESUMEN

Rock-hosted subseafloor habitats are very challenging for life, and current knowledge about microorganisms inhabiting such lithic environments is still limited. This study explored the cultivable microbial diversity in anaerobic enrichment cultures from cores recovered during the International Ocean Discovery Program (IODP) Expedition 357 from the Atlantis Massif (Mid-Atlantic Ridge, 30°N). 16S rRNA gene survey of enrichment cultures grown at 10-25°C and pH 8.5 showed that Firmicutes and Proteobacteria were generally dominant. However, cultivable microbial diversity significantly differed depending on incubation at atmospheric pressure (0.1 MPa), or hydrostatic pressures (HP) mimicking the in situ pressure conditions (8.2 or 14.0 MPa). An original, strictly anaerobic bacterium designated 70B-AT was isolated from core M0070C-3R1 (1150 meter below sea level; 3.5 m below seafloor) only from cultures performed at 14.0 MPa. This strain named Petrocella atlantisensis is a novel species of a new genus within the newly described family Vallitaleaceae (order Clostridiales, phylum Firmicutes). It is a mesophilic, moderately halotolerant and piezophilic chemoorganotroph, able to grow by fermentation of carbohydrates and proteinaceous compounds. Its 3.5 Mb genome contains numerous genes for ABC transporters of sugars and amino acids, and pathways for fermentation of mono- and di-saccharides and amino acids were identified. Genes encoding multimeric [FeFe] hydrogenases and a Rnf complex form the basis to explain hydrogen and energy production in strain 70B-AT. This study outlines the importance of using hydrostatic pressure in culture experiments for isolation and characterization of autochthonous piezophilic microorganisms from subseafloor rocks.

10.
Front Microbiol ; 9: 102, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29467733

RESUMEN

The Bay of Prony, South of New Caledonia, represents a unique serpentinite-hosted hydrothermal field due to its coastal situation. It harbors both submarine and intertidal active sites, discharging hydrogen- and methane-rich alkaline fluids of low salinity and mild temperature through porous carbonate edifices. In this study, we have extensively investigated the bacterial and archaeal communities inhabiting the hydrothermal chimneys from one intertidal and three submarine sites by 16S rRNA gene amplicon sequencing. We show that the bacterial community of the intertidal site is clearly distinct from that of the submarine sites with species distribution patterns driven by only a few abundant populations, affiliated to the Chloroflexi and Proteobacteria phyla. In contrast, the distribution of archaeal taxa seems less site-dependent, as exemplified by the co-occurrence, in both submarine and intertidal sites, of two dominant phylotypes of Methanosarcinales previously thought to be restricted to serpentinizing systems, either marine (Lost City Hydrothermal Field) or terrestrial (The Cedars ultrabasic springs). Over 70% of the phylotypes were rare and included, among others, all those affiliated to candidate divisions. We finally compared the distribution of bacterial and archaeal phylotypes of Prony Hydrothermal Field with those of five previously studied serpentinizing systems of geographically distant sites. Although sensu stricto no core microbial community was identified, a few uncultivated lineages, notably within the archaeal order Methanosarcinales and the bacterial class Dehalococcoidia (the candidate division MSBL5) were exclusively found in a few serpentinizing systems while other operational taxonomic units belonging to the orders Clostridiales, Thermoanaerobacterales, or the genus Hydrogenophaga, were abundantly distributed in several sites. These lineages may represent taxonomic signatures of serpentinizing ecosystems. These findings extend our current knowledge of the microbial diversity inhabiting serpentinizing systems and their biogeography.

11.
Front Microbiol ; 8: 57, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197130

RESUMEN

Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H2 and CH4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica, are identified as the first chimneys inhabitants before archaeal Methanosarcinales. They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose that the Firmicutes identified at PHF may have a versatile metabolism with the capability to use diverse organic compounds from biological or abiotic origin. From that perspective, this study sheds new light on the structure of deep microbial communities living at the energetic edge in serpentinites and may provide an alternative model of the earliest metabolisms.

13.
Front Microbiol ; 7: 1301, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27625634

RESUMEN

High amounts of hydrogen are emitted in the serpentinite-hosted hydrothermal field of the Prony Bay (PHF, New Caledonia), where high-pH (~11), low-temperature (< 40°C), and low-salinity fluids are discharged in both intertidal and shallow submarine environments. In this study, we investigated the diversity and distribution of potentially hydrogen-producing bacteria in Prony hyperalkaline springs by using metagenomic analyses and different PCR-amplified DNA sequencing methods. The retrieved sequences of hydA genes, encoding the catalytic subunit of [FeFe]-hydrogenases and, used as a molecular marker of hydrogen-producing bacteria, were mainly related to those of Firmicutes and clustered into two distinct groups depending on sampling locations. Intertidal samples were dominated by new hydA sequences related to uncultured Firmicutes retrieved from paddy soils, while submarine samples were dominated by diverse hydA sequences affiliated with anaerobic and/or thermophilic submarine Firmicutes pertaining to the orders Thermoanaerobacterales or Clostridiales. The novelty and diversity of these [FeFe]-hydrogenases may reflect the unique environmental conditions prevailing in the PHF (i.e., high-pH, low-salt, mesothermic fluids). In addition, novel alkaliphilic hydrogen-producing Firmicutes (Clostridiales and Bacillales) were successfully isolated from both intertidal and submarine PHF chimney samples. Both molecular and cultivation-based data demonstrated the ability of Firmicutes originating from serpentinite-hosted environments to produce hydrogen by fermentation, potentially contributing to the molecular hydrogen balance in situ.

14.
Int J Syst Evol Microbiol ; 66(11): 4692-4696, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27604340

RESUMEN

A mesophilic anaerobic bacterium, designated KHALHBd91T was isolated from the moderately hot spring of Hammam Biadha, Tunisia. The strain was Gram-staining-negative, non-sporulating, non-motile and rod-shaped, appearing singly (0.5-2.0×0.5-1 µm). It grew anaerobically at temperatures between 20 and 50 °C (optimum 37 °C) and at pH values between 5.5 and 7.8 (optimum 7.0). It required NaCl for growth, with growth observed at up 8.5 % and an optimum at 2.5 %. KHALHBd91T used glucose, galactose, maltose, pyruvate, lactate, fumarate and yeast extract as electron donors. The end-products from glucose fermentation were acetate, propionate, succinate and CO2. Nitrate, nitrite, thiosulfate, elemental sulfur, sulfate and sulfite were not used as terminal electron acceptors. The predominant cellular fatty acids were anteiso-C15 : 0 and iso-C15 : 0. The respiratory quinone was MK-6. The main polar lipids consisted of lipids, phospholipids, glycolipids, aminolipids, phosphoaminoglycolipids and phosphatidylethanolamine. The DNA G+C content was 35.0 mol%. Phylogenetic analysis of the small-subunit ribosomal 16S rRNA gene sequence indicated that KHALHBd91T had Marinifilum fragile and Marinifilum flexuosum (phylum Bacteroidetes, class Bacteroidia, order Bacteroidales) as its closest relatives (similarity of 86.7 and 87.8 % respectively). The phylogenetic and physiological data fro the present study strongly indicate that the isolate represents a novel genus and species of a novel family, Balneicella halophila gen. nov., sp. nov., in the family Balneicellaceaefam. nov. The type strain is KHALHBd91T (=DSM28579T=JCM19909T).


Asunto(s)
Bacteroidetes/clasificación , Manantiales de Aguas Termales/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Túnez , Vitamina K 2/análogos & derivados , Vitamina K 2/química
15.
Int J Syst Evol Microbiol ; 66(11): 4464-4470, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27499124

RESUMEN

A novel anaerobic, alkaliphilic, Gram-stain-positive, spore-forming bacterium was isolated from a carbonaceous hydrothermal chimney in Prony Bay, New Caledonia. This bacterium, designated strain 3bT, grew at temperatures from 30 to 43 °C (optimum 37 °C) and at pH between 7.8 and 10.1 (optimum 9.5). Added NaCl was not required for growth (optimum 0-0.2 %, w/v), but was tolerated at up to 4 %. Yeast extract was required for growth. Strain 3bT utilized crotonate, lactate and pyruvate, but not sugars. Crotonate was dismutated to acetate and butyrate. Lactate was disproportionated to acetate and propionate. Pyruvate was degraded to acetate plus trace amounts of hydrogen. Growth on lactate was improved by the addition of fumarate, which was used as an electron acceptor and converted to succinate. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate, nitrite, FeCl3, Fe(III)-citrate, Fe(III)-EDTA, chromate, arsenate, selenate and DMSO were not used as terminal electron acceptors. The G+C content of the genomic DNA was 33.2 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the isolate is a member of the family Clostridiaceae, order Clostridiales within the phylum Firmicutes. Strain 3bT was most closely related to 'Alkaliphilus hydrothermalis' FatMR1T (92.2 % 16S rRNA gene sequence similarity), and was positioned approximately equidistantly between the genera Alkaliphilus, Anaerovirgula and Natronincola. On the basis of phylogenetic, genetic, chemotaxonomic and physiological properties, strain 3bT is proposed to represent a novel species of a new genus, for which the name Serpentinicella alkaliphila gen. nov., sp. nov. is proposed. The type strain of Serpentinicella alkaliphila is 3bT (=DSM 100013T=JCM 30645T).


Asunto(s)
Clostridiales/clasificación , Respiraderos Hidrotermales/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Bahías , Clostridiales/genética , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Nueva Caledonia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
Stand Genomic Sci ; 10: 12, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26464750

RESUMEN

Mesotoga strain PhosAc3 was the first mesophilic cultivated member of the order Thermotogales. This genus currently contain two described species, M. prima and M. infera. Strain PhosAc3, isolated from a Tunisian digestor treating phosphogypsum, is phylogenetically closely related to M. prima strain MesG1.Ag.4.2(T). Strain PhosAc3 has a genome of 3.1 Mb with a G+C content of 45.2%. It contains 3,051 protein-coding genes of which 74.6% have their best reciprocal BLAST hit in the genome of the type species, strain MesG1.Ag.4.2(T). For this reason we propose to assign strain PhosAc3 as a novel ecotype of the Mesotoga prima species. However, in contrast with the M. prima type strain, (i) it does not ferment sugars but uses them only in the presence of elemental sulfur as terminal electron acceptor, (ii) it produces only acetate and CO2 from sugars, whereas strain MesG1.Ag.4.2(T) produces acetate, butyrate, isobutyrate, isovalerate, 2-methyl-butyrate and (iii) sulfides are also end products of the elemental sulfur reduction in theses growth conditions.

17.
Front Microbiol ; 6: 857, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26379636

RESUMEN

Active carbonate chimneys from the shallow marine serpentinizing Prony Hydrothermal Field were sampled 3 times over a 6 years period at site ST09. Archaeal and bacterial communities composition was investigated using PCR-based methods (clone libraries, Denaturating Gel Gradient Electrophoresis, quantitative PCR) targeting 16S rRNA genes, methyl coenzyme M reductase A and dissimilatory sulfite reductase subunit B genes. Methanosarcinales (Euryarchaeota) and Thaumarchaea were the main archaeal members. The Methanosarcinales, also observed by epifluorescent microscopy and FISH, consisted of two phylotypes that were previously solely detected in two other serpentinitzing ecosystems (The Cedars and Lost City Hydrothermal Field). Surprisingly, members of the hyperthermophilic order Thermococcales were also found which may indicate the presence of a hot subsurface biosphere. The bacterial community mainly consisted of Firmicutes, Chloroflexi, Alpha-, Gamma-, Beta-, and Delta-proteobacteria and of the candidate division NPL-UPA2. Members of these taxa were consistently found each year and may therefore represent a stable core of the indigenous bacterial community of the PHF chimneys. Firmicutes isolates representing new bacterial taxa were obtained by cultivation under anaerobic conditions. Our study revealed diverse microbial communities in PHF ST09 related to methane and sulfur compounds that share common populations with other terrestrial or submarine serpentinizing ecosystems.

18.
Int J Syst Evol Microbiol ; 65(9): 3097-3102, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26296351

RESUMEN

A novel, anaerobic, chemo-organotrophic bacterium, designated strain Ra1766H(T), was isolated from sediments of the Guaymas basin (Gulf of California, Mexico) taken from a depth of 2002  m. Cells were thin, motile, Gram-stain-positive, flexible rods forming terminal endospores. Strain Ra1766H(T) grew at temperatures of 25-45 °C (optimum 30 °C), pH 6.7-8.1 (optimum 7.5) and in a salinity of 5-60 g l(-1) NaCl (optimum 30 g l(-1)). It was an obligate heterotrophic bacterium fermenting carbohydrates (glucose and mannose) and organic acids (pyruvate and succinate). Casamino acids and amino acids (glutamate, aspartate and glycine) were also fermented. The main end products from glucose fermentation were acetate, butyrate, ethanol, H2 and CO2. Sulfate, sulfite, thiosulfate, elemental sulfur, fumarate, nitrate, nitrite and Fe(III) were not used as terminal electron acceptors. The predominant cellular fatty acids were C14  : 0, C16 : 1ω7, C16 : 1ω7 DMA and C16 : 0. The main polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phospholipids. The G+C content of the genomic DNA was 33.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Ra1766H(T) was affiliated to cluster XI of the order Clostridiales, phylum Firmicutes. The closest phylogenetic relative of Ra1766H(T) was Geosporobacter subterraneus (94.2% 16S rRNA gene sequence similarity). On the basis of phylogenetic inference and phenotypic properties, strain Ra1766H(T) ( = DSM 27501(T) = JCM 19377(T)) is proposed to be the type strain of a novel species of a novel genus, named Crassaminicella profunda.


Asunto(s)
Bacterias Anaerobias , Bacterias Anaerobias/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , California , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , Compuestos Férricos , Bacterias Grampositivas/genética , México , Datos de Secuencia Molecular , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sulfatos/metabolismo
19.
Int J Syst Evol Microbiol ; 65(10): 3501-3506, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26296995

RESUMEN

Strain KhalAKB1T, a mesophilic, anaerobic, rod-shaped bacterium, was isolated from water collected from a mesothermic Tunisian spring. Cells were Gram-staining-positive rods, occurring singly or in pairs and motile by one lateral flagellum. Strain KhalAKB1T grew at 15-45 °C (optimum 30 °C), at pH 5.5-8.5 (optimum pH 7.0) and in the presence of 0-35 g NaCl l- 1 (optimum 1 g NaCl l- 1). It fermented yeast extract and a wide range of carbohydrates including cellobiose, d-glucose, d-ribose, sucrose, d-xylose, maltose, d-galactose and starch as electron donors. Acetate, ethanol, CO2 and H2 were end products of glucose metabolism. It reduced elemental sulfur, but not sulfate, thiosulfate or sulfite, into sulfide. The DNA G+C content was 37.6 mol%. The predominant cellular fatty acids were C14 : 0 and C16 : 0. Phylogenetic analysis of the 16S rRNA gene sequence suggested Fusibacter bizertensis as the closest relative of this isolate (identity of 97.2 % to the type strain). Based on phenotypic, phylogenetic and genotypic taxonomic characteristics, strain KhalAKB1T is proposed to be assigned to a novel species within the genus Fusibacter, order Clostridiales, Fusibacter fontis sp. nov. The type strain is KhalAKB1T ( = DSM 28450T = JCM 19912T).


Asunto(s)
Clostridiales/clasificación , Manantiales de Aguas Termales/microbiología , Filogenia , Bacterias Reductoras del Azufre/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , Clostridiales/genética , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Azufre/metabolismo , Bacterias Reductoras del Azufre/genética , Bacterias Reductoras del Azufre/aislamiento & purificación , Túnez , Microbiología del Agua
20.
Int J Syst Evol Microbiol ; 65(8): 2574-2580, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25948619

RESUMEN

A novel anaerobic bacterial strain, ST07-YET, was isolated from a carbonate chimney of the Prony Hydrothermal Field (PHF) in New Caledonia. Cells were Gram-stain-positive, straight rods (0.7-0.8 × 3.0-5.0 µm) and motile by means of lateral flagella. Strain ST07-YET was mesophilic (optimum 35 °C), moderately alkaliphilic and halotolerant (optimum pH 8.7 and 5 g l- 1 NaCl). Elemental sulfur, sulfate, thiosulfate, sulfite, nitrate and nitrite were not used as terminal electron acceptors. Yeast extract, peptone, tryptone, Casamino acids, crotonate, pyruvate, galactose, maltose, sucrose, ribose, trehalose and glucose were used as carbon sources. Glucose fermentation led to acetate, H2 and CO2 formation. Arginine, serine, histidine, lysine, methionine and cysteine improved growth, but the Stickland reaction was negative for the combinations of amino acids tested. The major metabolic products from yeast extract fermentation were H2, CO2, acetate, butyrate, isobutyrate, isovalerate and propionate. The predominant cellular fatty acids were C16 : 0, C16 : 1cis9, C14 : 0 and C16 : 1cis7 (>5 % of total fatty acids). The G+C content of the genomic DNA was 32.9 mol%. Phylogenetic analysis revealed that strain ST07-YET was most closely related to Clostridium sticklandii DSM 519T and Acetoanaerobium noterae NOT-3T (96.7 % and 96.8 % 16S rRNA gene sequence similarity, respectively). On the basis of phylogenetic, chemotaxonomic and physiological properties, strain ST07-YET is proposed to represent a novel species of the genus Acetoanaerobium (order Clostridiales, phylum Firmicutes) with the name Acetoanaerobium pronyense sp. nov. The type strain is ST07-YET ( = DSM 27512T = JCM 19400T).


Asunto(s)
Clostridiales/clasificación , Respiraderos Hidrotermales/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Carbonatos , Clostridiales/genética , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , Datos de Secuencia Molecular , Nueva Caledonia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...