Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19574, 2024 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179700

RESUMEN

This is an interim analysis of the Beta-blocker (Propranolol) use in traumatic brain injury (TBI) based on the high-sensitive troponin status (BBTBBT) study. The BBTBBT is an ongoing double-blind placebo-controlled randomized clinical trial with a target sample size of 771 patients with TBI. We sought, after attaining 50% of the sample size, to explore the impact of early administration of beta-blockers (BBs) on the adrenergic surge, pro-inflammatory cytokines, and the TBI biomarkers linked to the status of high-sensitivity troponin T (HsTnT). Patients were stratified based on the severity of TBI using the Glasgow coma scale (GCS) and HsTnT status (positive vs negative) before randomization. Patients with positive HsTnT (non-randomized) received propranolol (Group-1; n = 110), and those with negative test were randomized to receive propranolol (Group-2; n = 129) or placebo (Group-3; n = 111). Propranolol was administered within 24 h of injury for 6 days, guided by the heart rate (> 60 bpm), systolic blood pressure (≥ 100 mmHg), or mean arterial pressure (> 70 mmHg). Luminex and ELISA-based immunoassays were used to quantify the serum levels of pro-inflammatory cytokines (Interleukin (IL)-1ß, IL-6, IL-8, and IL-18), TBI biomarkers [S100B, Neuron-Specific Enolase (NSE), and epinephrine]. Three hundred and fifty patients with comparable age (mean 34.8 ± 9.9 years) and gender were enrolled in the interim analysis. Group 1 had significantly higher baseline levels of IL-6, IL-1B, S100B, lactate, and base deficit than the randomized groups (p = 0.001). Group 1 showed a significant temporal reduction in serum IL-6, IL-1ß, epinephrine, and NSE levels from baseline to 48 h post-injury (p = 0.001). Patients with severe head injuries had higher baseline levels of IL-6, IL-1B, S100B, and HsTnT than mild and moderate TBI (p = 0.01). HsTnT levels significantly correlated with the Injury Severity Score (ISS) (r = 0.275, p = 0.001), GCS (r = - 0.125, p = 0.02), and serum S100B (r = 0.205, p = 0.001). Early Propranolol administration showed a significant reduction in cytokine levels and TBI biomarkers from baseline to 48 h post-injury, particularly among patients with positive HsTnT, indicating the potential role in modulating inflammation post-TBI.Trial registration: ClinicalTrials.gov NCT04508244. It was registered first on 11/08/2020. Recruitment started on 29 December 2020 and is ongoing. The study was partly presented at the 23rd European Congress of Trauma and Emergency Surgery (ECTES), April 28-30, 2024, in Estoril, Lisbon, Portugal.


Asunto(s)
Antagonistas Adrenérgicos beta , Biomarcadores , Lesiones Traumáticas del Encéfalo , Propranolol , Troponina T , Humanos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/sangre , Antagonistas Adrenérgicos beta/administración & dosificación , Antagonistas Adrenérgicos beta/uso terapéutico , Biomarcadores/sangre , Masculino , Femenino , Adulto , Persona de Mediana Edad , Troponina T/sangre , Propranolol/administración & dosificación , Propranolol/uso terapéutico , Método Doble Ciego , Escala de Coma de Glasgow , Citocinas/sangre , Subunidad beta de la Proteína de Unión al Calcio S100/sangre
2.
Pathol Res Pract ; 260: 155465, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39018927

RESUMEN

Fatty acid synthase (FASN) is a critical enzyme essential for the production of fats in the body. The abnormal expression of FASN is associated with different types of malignancies, including ovarian cancer. FASN plays a crucial role in cell growth and survival as a metabolic oncogene, although the specific processes that cause its dysregulation are still unknown. FASN interacts with signaling pathways linked to the progression of cancer. Pharmacologically inhibiting or inactivating the FASN gene has shown potential in causing the death of cancer cells, offering a possible treatment approach. This review examines the function of FASN in ovarian cancer, namely its level of expression, influence on the advancement of the disease, and its potential as a target for therapeutic interventions.


Asunto(s)
Ácido Graso Sintasas , Neoplasias Ováricas , Humanos , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/enzimología , Femenino , Ácido Graso Sintasas/metabolismo , Ácido Graso Sintasas/antagonistas & inhibidores , Metástasis de la Neoplasia , Transducción de Señal , Animales , Terapia Molecular Dirigida , Acido Graso Sintasa Tipo I
3.
Cell Death Discov ; 10(1): 225, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724504

RESUMEN

Non-melanoma skin cancer (NMSC), encompassing basal and squamous cell carcinoma, is the most prevalent cancer in the United States. While surgical removal remains the conventional therapy with a 95% 5-year cure rate, there is a growing interest in exploring alternative treatment strategies. In this study, we investigated the role of Bortezomib (BTZ), a proteasome inhibitor, in NMSC. Using two NMSC cell lines (A431 and A388), we examined the effects of BTZ treatment. Our results demonstrated that 48 h of BTZ treatment led to downregulating Skp2 expression in both A431 and A388 cells while upregulating p53 expression, specifically in A388 cells. These alterations resulted in impaired cellular growth and caspase-dependent cell death. Silencing Skp2 in A388 cells with siRNA confirmed the upregulation of p53 as a direct target. Furthermore, BTZ treatment increased the Bax to Bcl-2 ratio, promoting mitochondrial permeability and the subsequent release of cytochrome C, thereby activating caspases. We also found that BTZ exerted its antitumor effects by generating reactive oxygen species (ROS), as blocking ROS production significantly reduced BTZ-induced apoptotic cell death. Interestingly, BTZ treatment induced autophagy, which is evident from the increased expression of microtubule-associated proteins nucleoporin p62 and LC-3A/B. In addition to cell lines, we assessed the impact of BTZ in an in vivo setting using Caenorhabditis elegans (C. elegans). Our findings demonstrated that BTZ induced germline apoptosis in worms even at low concentrations. Notably, this increased apoptosis was mediated through the activity of CEP-1, the worm's counterpart to mammalian p53. In summary, our study elucidated the molecular mechanism underlying BTZ-induced apoptosis in NMSC cell lines and C. elegans. By targeting the skp2/p53 axis, inducing mitochondrial permeability, generating ROS, and promoting autophagy, BTZ demonstrates promising anti-cancer activity in NMSC. These findings provide novel insights into potential therapeutic strategies for controlling the unregulated growth of NMSC.

4.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38794148

RESUMEN

The growing global burden of malignant tumors with increasing incidence and mortality rates underscores the urgent need for more effective and less toxic therapeutic options. Herbal compounds are being increasingly studied for their potential to meet these needs due to their reduced side effects and significant efficacy. Pristimerin (PS), a triterpenoid from the quinone formamide class derived from the Celastraceae and Hippocrateaceae families, has emerged as a potent anticancer agent. It exhibits broad-spectrum anti-tumor activity across various cancers such as breast, pancreatic, prostate, glioblastoma, colorectal, cervical, and lung cancers. PS modulates several key cellular processes, including apoptosis, autophagy, cell migration and invasion, angiogenesis, and resistance to chemotherapy, targeting crucial signaling pathways such as those involving NF-κB, p53, and STAT3, among others. The main objective of this review is to provide a comprehensive synthesis of the current literature on PS, emphasizing its mechanisms of action and molecular targets with the utmost clarity. It discusses the comparative advantages of PS over current cancer therapies and explores the implications for future research and clinical applications. By delineating the specific pathways and targets affected by PS, this review seeks to offer valuable insights and directions for future research in this field. The information gathered in this review could pave the way for the successful development of PS into a clinically applicable anticancer therapy.

5.
Biomed Pharmacother ; 175: 116663, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688170

RESUMEN

Cancer is caused by a complex interaction of factors that interrupt the normal growth and division of cells. At the center of this process is the intricate relationship between DNA damage and the cellular mechanisms responsible for maintaining genomic stability. When DNA damage is not repaired, it can cause genetic mutations that contribute to the initiation and progression of cancer. On the other hand, the DNA damage response system, which involves the phosphorylation of the histone variant H2AX (γH2AX), is crucial in preserving genomic integrity by signaling and facilitating the repair of DNA double-strand breaks. This review provides an explanation of the molecular dynamics of H2AX in the context of DNA damage response. It emphasizes the crucial role of H2AX in recruiting and localizing repair machinery at sites of chromatin damage. The review explains how H2AX phosphorylation, facilitated by the master kinases ATM and ATR, acts as a signal for DNA damage, triggering downstream pathways that govern cell cycle checkpoints, apoptosis, and the cellular fate decision between repair and cell death. The phosphorylation of H2AX is a critical regulatory point, ensuring cell survival by promoting repair or steering cells towards apoptosis in cases of catastrophic genomic damage. Moreover, we explore the therapeutic potential of targeting H2AX in cancer treatment, leveraging its dual function as a biomarker of DNA integrity and a therapeutic target. By delineating the pathways that lead to H2AX phosphorylation and its roles in apoptosis and cell cycle control, we highlight the significance of H2AX as both a prognostic tool and a focal point for therapeutic intervention, offering insights into its utility in enhancing the efficacy of cancer treatments.


Asunto(s)
Daño del ADN , Reparación del ADN , Histonas , Neoplasias , Humanos , Histonas/metabolismo , Neoplasias/genética , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Fosforilación , Transducción de Señal , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Terapia Molecular Dirigida
6.
Front Pharmacol ; 15: 1352907, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434705

RESUMEN

In the current study, Neosetophomone B (NSP-B) was investigated for its anti-cancerous potential using network pharmacology, quantum polarized ligand docking, molecular simulation, and binding free energy calculation. Using SwissTarget prediction, and Superpred, the molecular targets for NSP-B were predicted while cancer-associated genes were obtained from DisGeNet. Among the total predicted proteins, only 25 were reported to overlap with the disease-associated genes. A protein-protein interaction network was constructed by using Cytoscape and STRING databases. MCODE was used to detect the densely connected subnetworks which revealed three sub-clusters. Cytohubba predicted four targets, i.e., fibroblast growth factor , FGF20, FGF22, and FGF23 as hub genes. Molecular docking of NSP-B based on a quantum-polarized docking approach with FGF6, FGF20, FGF22, and FGF23 revealed stronger interactions with the key hotspot residues. Moreover, molecular simulation revealed a stable dynamic behavior, good structural packing, and residues' flexibility of each complex. Hydrogen bonding in each complex was also observed to be above the minimum. In addition, the binding free energy was calculated using the MM/GBSA (Molecular Mechanics/Generalized Born Surface Area) and MM/PBSA (Molecular Mechanics/Poisson-Boltzmann Surface Area) approaches. The total binding free energy calculated using the MM/GBSA approach revealed values of -36.85 kcal/mol for the FGF6-NSP-B complex, -43.87 kcal/mol for the FGF20-NSP-B complex, and -37.42 kcal/mol for the FGF22-NSP-B complex, and -41.91 kcal/mol for the FGF23-NSP-B complex. The total binding free energy calculated using the MM/PBSA approach showed values of -30.05 kcal/mol for the FGF6-NSP-B complex, -39.62 kcal/mol for the FGF20-NSP-B complex, -34.89 kcal/mol for the FGF22-NSP-B complex, and -37.18 kcal/mol for the FGF23-NSP-B complex. These findings underscore the promising potential of NSP-B against FGF6, FGF20, FGF22, and FGF23, which are reported to be essential for cancer signaling. These results significantly bolster the potential of NSP-B as a promising candidate for cancer therapy.

7.
Pathol Res Pract ; 254: 155174, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38306863

RESUMEN

Breast cancer remains a major global health challenge. Its rising incidence is attributed to factors such as delayed diagnosis, the complexity of its subtypes, and increasing drug resistance, all contributing to less-than-ideal patient outcomes. Central to the progression of breast cancer are epigenetic aberrations, which significantly contribute to drug resistance and the emergence of cancer stem cell traits. These include alterations in DNA methylation, histone modifications, and the expression of non-coding RNAs. Understanding these epigenetic changes is crucial for developing advanced breast cancer management strategies despite their complexity. Investigating these epigenetic modifications offers the potential for novel diagnostic markers, more accurate prognostic indicators, and the identification of reliable predictors of treatment response. This could lead to the development of new targeted therapies. However, this requires sustained, focused research efforts to navigate the challenges of understanding breast cancer carcinogenesis and its epigenetic underpinnings. A deeper understanding of epigenetic mechanisms in breast cancer can revolutionize personalized medicine. This could lead to significant improvements in patient care, including early detection, precise disease stratification, and more effective treatment options.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Metilación de ADN/genética , Epigénesis Genética , Carcinogénesis/genética , Epigenómica
8.
Curr Opin Hematol ; 31(3): 89-95, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38335037

RESUMEN

PURPOSE OF REVIEW: Cytokine-mediated signaling pathways, including JAK/STAT, PI3K/AKT, and Ras/MAPK pathways, play an important role in the process of erythropoiesis. These pathways are involved in the survival, proliferation, and differentiation function of erythropoiesis. RECENT FINDINGS: The JAK/STAT pathway controls erythroid progenitor differentiation, proliferation, and survival. The PI3K/AKT signaling cascade facilitates erythroid progenitor survival, proliferation, and final differentiation. During erythroid maturation, MAPK, triggered by EPO, suppresses myeloid genes, while PI3K is essential for differentiation. Pro-inflammatory cytokines activate signaling pathways that can alter erythropoiesis like EPOR-triggered signaling, including survival, differentiation, and proliferation. SUMMARY: A comprehensive understanding of signaling networks is crucial for the formulation of treatment approaches for hematologic disorders. Further investigation is required to fully understand the mechanisms and interactions of these signaling pathways in erythropoiesis.


Asunto(s)
Eritropoyesis , Transducción de Señal , Humanos , Transducción de Señal/fisiología , Eritropoyesis/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinasas Janus , Fosfatidilinositol 3-Quinasas/metabolismo , Factores de Transcripción STAT/metabolismo , Diferenciación Celular
9.
Exp Cell Res ; 435(1): 113907, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184222

RESUMEN

Neosetophomone B (NSP-B) is a unique meroterpenoid fungal secondary metabolite that has previously demonstrated promising anti-cancer properties against various cancer cell lines in vitro. However, its in vivo anti-cancer potential remaines unexplored. To fill this gap in our knowledge, we tested NSP-B's in vivo anti-cancer activity using a zebrafish model, an organism that has gained significant traction in biomedical research due to its genetic similarities with humans and its transparent nature, allowing real-time tumor growth observation. For our experiments, we employed the K562-injected zebrafish xenograft model. Upon treating these zebrafish with NSP-B, we observed a marked reduction in the size and number of tumor xenografts. Delving deeper, our analyses indicated that NSP-B curtailed tumor growth and proliferation of leukemic grafted xenograft within the zebrafish. These results show that NSP-B possesses potent in vivo anti-cancer properties, making it a potential novel therapeutic agent for addressing hematological malignancies.


Asunto(s)
Neoplasias , Pez Cebra , Animales , Humanos , Pez Cebra/metabolismo , Xenoinjertos , Modelos Animales de Enfermedad , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Discov Med ; 36(180): 1-15, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273742

RESUMEN

The tumor microenvironment (TME) exerts a profound influence on the oncogenesis and progression of various cancers, notably those instigated by the human papillomavirus (HPV) and the Epstein-Barr virus (EBV). The etiology of HPV and EBV-associated malignancies is rooted in intricate interactions that intertwine viral infections, genetic predispositions, and distinct TME dynamics. These interactions foster a milieu that can either support or hinder tumorigenic progression. Gaining in-depth knowledge of the TME's unique features, including its cellular composition, cytokine profiles, and metabolic alterations specific to HPV and EBV-associated cancers, is fundamental to innovating more efficacious therapeutic strategies. This review delineates the intricate roles of HPV and EBV in shaping the TME and expounds upon the unique TME characteristics specific to HPV and EBV-driven cancers. Additionally, we spotlight innovative approaches to remodel the TME, aiming to augment therapeutic efficacy in combatting HPV and EBV-associated neoplasms.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias , Infecciones por Papillomavirus , Humanos , Herpesvirus Humano 4 , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Papillomavirus/complicaciones , Virus del Papiloma Humano , Microambiente Tumoral , Carcinogénesis , Papillomaviridae/genética
11.
Cell Biol Int ; 48(2): 190-200, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37885161

RESUMEN

Multiple myeloma (MM) is a hematologic malignancy associated with malignant plasma cell proliferation in the bone marrow. Despite the available treatments, drug resistance and adverse side effects pose significant challenges, underscoring the need for alternative therapeutic strategies. Natural products, like the fungal metabolite neosetophomone B (NSP-B), have emerged as potential therapeutic agents due to their bioactive properties. Our study investigated NSP-B's antitumor effects on MM cell lines (U266 and RPMI8226) and the involved molecular mechanisms. NSP-B demonstrated significant growth inhibition and apoptotic induction, triggered by reduced AKT activation and downregulation of the inhibitors of apoptotic proteins and S-phase kinase protein. This was accompanied by an upregulation of p21Kip1 and p27Cip1 and an elevated Bax/BCL2 ratio, culminating in caspase-dependent apoptosis. Interestingly, NSP-B also enhanced the cytotoxicity of bortezomib (BTZ), an existing MM treatment. Overall, our findings demonstrated that NSP-B induces caspase-dependent apoptosis, increases cell damage, and suppresses MM cell proliferation while improving the cytotoxic impact of BTZ. These findings suggest that NSP-B can be used alone or in combination with other medicines to treat MM, highlighting its importance as a promising phytoconstituent in cancer therapy.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Mieloma Múltiple/metabolismo , Línea Celular Tumoral , Apoptosis , Transducción de Señal , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bortezomib/farmacología , Proliferación Celular
13.
J Dermatol Sci ; 112(2): 83-91, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865581

RESUMEN

BACKGROUND: Cutaneous T cell lymphoma (CTCL) is a T cell-derived non-Hodgkin lymphoma primarily affecting the skin, with treatment posing a significant challenge and low survival rates. OBJECTIVE: In this study, we investigated the anti-cancer potential of Neosetophomone B (NSP-B), a fungal-derived secondary metabolite, on CTCL cell lines H9 and HH. METHODS: Cell viability was measured using Cell counting Kit-8 (CCK8) assays. Apoptosis was measured by annexin V/PI dual staining. Immunoblotting was performed to examine the expression of proteins. Applied Biosystems' high-resolution Human Transcriptome Array 2.0 was used to examine gene expression. RESULTS: NSP-B induced apoptosis in CTCL cells by activating mitochondrial signaling pathways and caspases. We observed downregulated expression of BUB1B, Aurora Kinases A and B, cyclin-dependent kinases (CDKs) 4 and 6, and polo-like kinase 1 (PLK1) in NSP-B treated cells, which was further corroborated by Western blot analysis. Notably, higher expression levels of these genes showed reduced overall and progression-free survival in the CTCL patient cohort. FOXM1 and BUB1B expression exhibited a dose-dependent reduction in NSP-B-treated CTCL cells.FOXM1 silencing decreased cell viability and increased apoptosis via BUB1B downregulation. Moreover, NSP-B suppressed FOXM1-regulated genes, such as Aurora Kinases A and B, CDKs 4 and 6, and PLK1. The combined treatment of Bortezomib and NSP-B showed greater efficacy in reducing CTCL cell viability and promoting apoptosis compared to either treatment alone. CONCLUSION: Our findings suggest that targeting the FOXM1 pathway may provide a promising therapeutic strategy for CTCL management, with NSP-B offering significant potential as a novel treatment option.


Asunto(s)
Linfoma Cutáneo de Células T , Neoplasias Cutáneas , Humanos , Apoptosis , Aurora Quinasa A/metabolismo , Aurora Quinasa A/uso terapéutico , Línea Celular Tumoral , Proteína Forkhead Box M1/efectos de los fármacos , Proteína Forkhead Box M1/metabolismo , Linfoma Cutáneo de Células T/tratamiento farmacológico , Linfoma Cutáneo de Células T/patología , Transducción de Señal/efectos de los fármacos , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Terpenos/farmacología , Terpenos/uso terapéutico
14.
Front Immunol ; 14: 1157100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37256148

RESUMEN

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related morbidity and mortality worldwide. Immune checkpoint inhibitors (ICIs) including anti-PD-1 and anti-PD-L1 antibodies, have significantly changed the treatment outcomes with better overall survival, but only 15-40% of the patients respond to ICIs therapy. The search for predictive biomarkers of responses is warranted for better clinical outcomes. We aim here to identify pre-treatment soluble immune molecules as surrogate biomarkers for tissue PD-L1 (TPD-L1) status and as predictors of response to anti-PD-1/PD-L1 therapy in NSCLC patients. Sera from 31 metastatic NSCLC patients, eligible for anti-PD-1/PD-L1 or combined chemoimmunotherapy, were collected prior to treatment. Analysis of soluble biomarkers with TPD-L1 status showed significant up/down regulation of the immune inhibitory checkpoint markers (sSiglec7, sSiglec9, sULBP4 and sPD-L2) in patients with higher TPD-L1 (TPD-L1 >50%) expression. Moreover, correlation analysis showed significant positive linear correlation of soluble PD-L1 (sPD-L1) with higher TPD-L1 expression. Interestingly, only responders in the TPD-L1 >50% group showed significant down regulation of the immune inhibitory markers (sPD-L2, sTIMD4, sNectin2 and CEA). When responders vs. non-responders were compared, significant down regulation of other immune inhibitory biomarkers (sCD80, sTIMD4 and CEA) was recorded only in responding patients. In this, the optimal cut-off values of CD80 <91.7 pg/ml and CEA <1614 pg/ml were found to be significantly associated with better progression free survival (PFS). Indeed, multivariate analysis identified the cutoff-value of CEA <1614 pg/ml as an independent predictor of response in our patients. We identified here novel immune inhibitory/stimulatory soluble mediators as potential surrogate/predictive biomarkers for TPD-L1 status, treatment response and PFS in NSCLC patients treated with anti-PD-1/PD-L1 therapy.


Asunto(s)
Antineoplásicos Inmunológicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Antineoplásicos Inmunológicos/farmacología , Resultado del Tratamiento , Supervivencia sin Progresión , Factores Inmunológicos/uso terapéutico
15.
Biomed Pharmacother ; 163: 114784, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37121152

RESUMEN

More information about a person's genetic makeup, drug response, multi-omics response, and genomic response is now available leading to a gradual shift towards personalized treatment. Additionally, the promotion of non-animal testing has fueled the computational toxicogenomics as a pivotal part of the next-gen risk assessment paradigm. Artificial Intelligence (AI) has the potential to provid new ways analyzing the patient data and making predictions about treatment outcomes or toxicity. As personalized medicine and toxicogenomics involve huge data processing, AI can expedite this process by providing powerful data processing, analysis, and interpretation algorithms. AI can process and integrate a multitude of data including genome data, patient records, clinical data and identify patterns to derive predictive models anticipating clinical outcomes and assessing the risk of any personalized medicine approaches. In this article, we have studied the current trends and future perspectives in personalized medicine & toxicology, the role of toxicogenomics in connecting the two fields, and the impact of AI on personalized medicine & toxicology. In this work, we also study the key challenges and limitations in personalized medicine, toxicogenomics, and AI in order to fully realize their potential.


Asunto(s)
Inteligencia Artificial , Medicina de Precisión , Humanos , Toxicogenética , Algoritmos , Tecnología
16.
Cancers (Basel) ; 14(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36428714

RESUMEN

Multiple myeloma (MM) is a hematological disorder characterized by the abnormal expansion of plasma cells in the bone marrow. Despite great advances over the past three decades in discovering the efficacious therapies for MM, the disease remains incurable for most patients owing to emergence of drug-resistant cancerous cells. Guggulsterone (GS), a phytosteroid, extracted from the gum resin of guggul plant, has displayed various anticancer activities in vitro and in vivo; however, the molecular mechanisms of its anticancer activity have not been evaluated in MM cells. Therefore, in this study, we investigated the anticancer activity of GS in various MM cell lines (U266, MM.1S, and RPMI 8226) and the mechanisms involved. GS treatment of MM cells caused inhibition of cell proliferation and induction of apoptotic cell death as indicated by increased Bax protein expression, activation of caspases, and cleavage of poly (ADP-ribose) polymerase. This was associated with the downregulation of various proliferative and antiapoptotic gene products, including cyclin D, Bcl-2, Bcl-xL, and X-linked inhibitor of apoptosis protein. GS also suppressed the constitutive and interleukin 6-induced activation of STAT3. Interestingly, the inhibition of Janus activated kinase or STAT3 activity by the specific inhibitors or by siRNA knockdown of STAT3 resulted in the downregulation of HMGB1, suggesting an association between GS, STAT3, and HMGB1. Finally, GS potentiated the anticancer effects of bortezomib (BTZ) in MM cells. Herein, we demonstrated that GS could be a potential therapeutic agent for the treatment of MM, possibly alone or in combination with BTZ.

17.
Biomed Pharmacother ; 154: 113610, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36030591

RESUMEN

Cancer is a devastating disease and is the second leading cause of death worldwide. Surgery, chemotherapy (CT), and/or radiation therapy (RT) are the treatment of choice for most advanced tumors. Unfortunately, treatment failure due to intrinsic and acquired resistance to the current CT and RT is a significant challenge associated with poor patient prognosis. There is an urgent need to develop and identify agents that can sensitize tumor cells to chemo-radiation therapy (CRT) with minimal cytotoxicity to the healthy tissues. While many recent studies have identified the underlying molecular mechanisms and therapeutic targets for CRT failure, using small molecule inhibitors to chemo/radio sensitize tumors is associated with high toxicity and increased morbidity. Natural products have long been used as chemopreventive agents in many cancers. Combining many of these compounds with the standard chemotherapeutic agents or with RT has shown synergistic effects on cancer cell death and overall improvement in patient survival. Based on the available data, there is strong evidence that natural products have a robust therapeutic potential along with CRT and their well-known chemopreventive effects in many solid tumors. This review article reports updated literature on different natural products used as CT or RT sensitizers in many solid tumors. This is the first review discussing CT and RT sensitizers together in cancer.


Asunto(s)
Antineoplásicos , Productos Biológicos , Neoplasias , Fármacos Sensibilizantes a Radiaciones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico
18.
Semin Cancer Biol ; 83: 152-165, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-32858230

RESUMEN

The global burden of breast cancer (BC) is increasing significantly. This trend is caused by several factors such as late diagnosis, limited treatment options for certain BC subtypes, drug resistance which all lead to poor clinical outcomes. Recent research has reported the role of epigenetic alterations in the mechanism of BC pathogenesis and its hallmarks include drug resistance and stemness features. The understanding of these modifications and their significance in the management of BC carcinogenesis is challenging and requires further attention. Nevertheless, it promises to provide novel insight needed for utilizing these alterations as potential diagnostic, prognostic markers, predict treatment efficacy, as well as therapeutic agents. This highlights the importance of continuing research development to further advance the existing knowledge on epigenetics and BC carcinogenesis to overcome the current challenges. Hence, this review aims to shed light and discuss the current state of epigenetics research in the diagnosis and management of BC.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Carcinogénesis , Metilación de ADN , Epigénesis Genética , Epigenómica , Femenino , Humanos
19.
Drug Discov Today ; 27(2): 547-557, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34655796

RESUMEN

Resorcylic acid lactones (RALs) are fungal polyketides that consist of a ß-resorcylic acid residue (2,4-dihydroxybenzoic acid) embedded in a macrolactone ring. RALs exhibit a broad range of biological activities, including anticancer activities. Following discovery of the selective Hsp90 inhibition activity of radicicol, the kinase inhibition activity of hypothemycin, monocillin II, 5Z-7-oxo-zeaenol, and L-783,277 RALs, and the nuclear factor kappa B (NF-κB) inhibition activity of the RAL zearalenone, have attracted great attention as potential therapeutics for cancer treatment. In this minireview, we focus on natural RALs that possess cytotoxic activities [IC50 values < 10 µM (or 4-5 µg/ml)], discussing their structures, isolation, occurrence, biological activities, and anticancer molecular mechanisms.


Asunto(s)
Lactonas , FN-kappa B , Biología , Lactonas/química , Lactonas/farmacología , Estructura Molecular
20.
Biomed Pharmacother ; 144: 112358, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34794241

RESUMEN

Effective treatment of lung cancer remains a significant clinical challenge due to its multidrug resistance and side effects of the current treatment options. The high mortality associated with this malignancy indicates the need for new therapeutic interventions with fewer side effects. Natural compounds offer various benefits such as easy access, minimal side effects, and multi-molecular targets and thus, can prove useful in treating lung cancer. Sanguinarine (SNG), a natural compound, possesses favorable therapeutic potential against a variety of cancers. Here, we examined the underlying molecular mechanisms of SNG in Non-Small Cell Lung Cancer (NSCLC) cells. SNG suppressed cell growth and induced apoptosis via downregulation of the constitutively active JAK/STAT pathway in all the NSCLC cell lines. siRNA silencing of STAT3 in NSCLC cells further confirmed the involvement of the JAK/STAT signaling cascade. SNG treatment increased Bax/Bcl-2 ratio, which contributed to a leaky mitochondrial membrane leading to cytochrome c release accompanied by caspase activation. In addition, we established the antitumor effects of SNG through reactive oxygen species (ROS) production, as inhibiting ROS production prevented the apoptosis-inducing potential of SNG. In vivo xenograft tumor model further validated our in vitro findings. Overall, our study investigated the molecular mechanisms by which SNG induces apoptosis in NSCLC, providing avenues for developing novel natural compound-based cancer therapies.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Benzofenantridinas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Isoquinolinas/farmacología , Quinasas Janus/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , División Celular/efectos de los fármacos , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , ARN Interferente Pequeño/farmacología , Factor de Transcripción STAT3 , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA