Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(36): 47192-47205, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39262054

RESUMEN

This study investigates the synthesis and optimization of nanobots (NBs) loaded with pDNA using the layer-by-layer (LBL) method and explores the impact of their collective motion on the transfection efficiency. NBs consist of biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and are powered by the urease enzyme, enabling autonomous movement and collective swarming behavior. In vitro experiments were conducted to validate the delivery efficiency of fluorescently labeled NBs, using two-dimensional (2D) and three-dimensional (3D) cell models: murine urothelial carcinoma cell line (MB49) and spheroids from human urothelial bladder cancer cells (RT4). Swarms of pDNA-loaded NBs showed enhancements of 2.2- to 2.6-fold in delivery efficiency and 6.8- to 8.1-fold in material delivered compared to inhibited particles (inhibited enzyme) and the absence of fuel in a 2D cell culture. Additionally, efficient intracellular delivery of pDNA was demonstrated in both cell models by quantifying and visualizing the expression of eGFP. Swarms of NBs exhibited a >5-fold enhancement in transfection efficiency compared to the absence of fuel in a 2D culture, even surpassing the Lipofectamine 3000 commercial transfection agent (cationic lipid-mediated transfection). Swarms also demonstrated up to a 3.2-fold enhancement in the amount of material delivered in 3D spheroids compared to the absence of fuel. The successful transfection of 2D and 3D cell cultures using swarms of LBL PLGA NBs holds great potential for nucleic acid delivery in the context of bladder treatments.


Asunto(s)
ADN , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Humanos , Animales , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Línea Celular Tumoral , Nanopartículas/química , ADN/química , ADN/metabolismo , Transfección/métodos , Ureasa/metabolismo , Ureasa/química , Ureasa/genética , Plásmidos/metabolismo , Plásmidos/genética , Plásmidos/química , Técnicas de Transferencia de Gen , Ácido Poliglicólico/química , Ácido Láctico/química , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia
2.
ACS Nano ; 18(26): 16701-16714, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38885185

RESUMEN

Biological barriers present a significant obstacle to treatment, especially when drugs are administered locally to increase their concentrations at the target site while minimizing unintended off-target effects. Among these barriers, mucus presents a challenge, as it serves as a protective layer in the respiratory, urogenital, and gastrointestinal tracts. Its role is to shield the underlying epithelial cells from pathogens and toxic compounds but also impedes the efficient delivery of drugs. Despite the exploration of mucolytic agents to improve drug delivery, overcoming this protective barrier remains a significant hurdle. In our study, we investigate an alternative approach involving the use of catalase-powered nanobots. We use an in vitro model that simulates intestinal mucus secretion to demonstrate the dual functionality of our nanobots. This includes their ability to disrupt mucus, which we confirmed through in vitro and ex vivo validation, as well as their self-propulsion to overcome the mucus barrier, resulting in a 60-fold increase compared with passive nanoparticles. Therefore, our findings highlight the potential utility of catalase-powered nanobots as carriers for therapeutic agents since they could enhance drug delivery efficiency by penetrating the mucus barrier.


Asunto(s)
Catalasa , Moco , Catalasa/metabolismo , Catalasa/química , Moco/metabolismo , Moco/química , Humanos , Animales , Nanopartículas/química , Nanopartículas/metabolismo , Sistemas de Liberación de Medicamentos , Ratones
3.
J Mater Chem B ; 12(11): 2711-2719, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38239179

RESUMEN

Micro/nanomotors (MNMs) have evolved from single self-propelled entities to versatile systems capable of performing one or multiple biomedical tasks. When single MNMs self-assemble into coordinated swarms, either under external control or triggered by chemical reactions, they offer advantages that individual MNMs cannot achieve. These benefits include intelligent multitasking and adaptability to changes in the surrounding environment. Here, we provide our perspective on the evolution of MNMs, beginning with the development of enzymatic MNMs since the first theoretical model was proposed in 2005. These enzymatic MNMs hold immense promise in biomedicine due to their advantages in biocompatibility and fuel availability. Subsequently, we introduce the design and application of single motors in biomedicine, followed by the control of MNM swarms and their biomedical applications. In the end, we propose viable solutions for advancing the development of MNM swarms and anticipate valuable insights into the creation of more intelligent and controllable MNM swarms for biomedical applications.


Asunto(s)
Nanoestructuras , Nanotecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA