Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 231: 112459, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35512577

RESUMEN

The emergence of opportunistic pathogens and the selection of resistant strains have created a grim scenario for conventional antimicrobials. Consequently, there is an ongoing search for alternative techniques to control these microorganisms. One such technique is antimicrobial photodynamic therapy (aPDT), which combines photosensitizers, light, and molecular oxygen to produce reactive oxygen species and kill the target pathogen. Here, the in vitro susceptibilities of three fungal pathogens, namely Candida albicans, Aspergillus nidulans, and Colletotrichum abscissum to aPDT with zinc(II) phthalocyanine (ZnPc) derivative complexes were investigated. Three ZnPc bearing thiopyridinium substituents were synthesized and characterized by several spectroscopic techniques. The Q-band showed sensitivity to the substituent with high absorptivity coefficient in the 680-720 nm region. Derivatization and position of the rings with thiopyridinium units led to high antifungal efficiency of the cationic phthalocyanines, which could be correlated with singlet oxygen quantum yield, subcellular localization, and cellular uptake. The minimum inhibitory concentrations (MIC) of the investigated ZnPc-R complexes against the studied microorganisms were 2.5 µM (C. albicans) and 5 µM (A. nidulans and C. abscissum). One ZnPc derivative achieved complete photokilling of C. albicans and, furthermore, yielded low MIC values when used against the tolerant plant-pathogen C. abscissum. Our results show that chemical modification is an important step in producing better photosensitizers for aPDT against fungal pathogens.


Asunto(s)
Antiinfecciosos , Fotoquimioterapia , Antibacterianos , Antiinfecciosos/farmacología , Candida albicans , Isoindoles , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología
2.
Front Chem ; 10: 825716, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360535

RESUMEN

Phthalocyanine (Pc) dyes are photoactive molecules that can absorb and emit light in the visible spectrum, especially in the red region of the spectrum, with great potential for biological scopes. For this target, it is important to guarantee a high Pc solubility, and the use of suitable pyridinium units on their structure can be a good strategy to use effective photosensitizers (PSs) for photodynamic therapy (PDT) against cancer cells. Zn(II) phthalocyanines (ZnPcs) conjugated with thiopyridinium units (1-3) were evaluated as PS drugs against B16F10 melanoma cells, and their photophysical, photochemical, and in vitro photobiological properties were determined. The photodynamic efficiency of the tetra- and octa-cationic ZnPcs 1-3 was studied and compared at 1, 2, 5, 10, and 20 µM. The different number of charge units, and the presence/absence of a-F atoms on the Pc structure, contributes for their PDT efficacy. The 3-(4',5'-dimethylthiazol-2'-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays on B16F10 melanoma cells show a moderate to high capacity to be photoinactivated by ZnPcs 1-3 (ZnPc 1 > ZnPc 2 > ZnPc 3). The best PDT conditions were found at a Pc concentration of 20 µM, under red light (λ = 660 ± 20 nm) at an irradiance of 4.5 mW/cm2 for 667 s (light dose of 3 J/cm2). In these conditions, it is noteworthy that the cationic ZnPc 1 shows a promising photoinactivation ratio, reaching the detection limit of the MTT method. Moreover, these results are comparable to the better ones in the literature.

3.
Chemistry ; 27(6): 1990-1994, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33185284

RESUMEN

Photodynamic therapy (PDT) is a promising alternative to overcome the resistance of melanoma to conventional therapies. Currently applied photosensitizers (PS) are often based on tetrapyrrolic macrocycles like porphyrins. Unfortunately, in some cases the use of this type of derivative is limited due to their poor solubility in the biological environment. Feasible approaches to surpass this drawback are based on lipid formulations. Besides that, and inspired in the efficacy of potassium iodide (KI) for antimicrobial photodynamic therapy (aPDT), the combined effect of singlet oxygen (1 O2 ) with KI was assessed in this work, as an alternative strategy to potentiate the effect of PDT against resistant melanoma cells.


Asunto(s)
Melanoma , Humanos , Melanoma/tratamiento farmacológico , Micelas , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/farmacología , Porfirinas/uso terapéutico , Oxígeno Singlete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...