Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pathol ; 240(4): 410-424, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27569721

RESUMEN

Fibrosis is a characteristic of Duchenne muscular dystrophy (DMD), yet the cellular and molecular mechanisms responsible for DMD fibrosis are poorly understood. Utilizing the Collagen1a1-GFP transgene to identify cells producing Collagen-I matrix in wild-type mice exposed to toxic injury or those mutated at the dystrophin gene locus (mdx) as a model of DMD, we studied mechanisms of skeletal muscle injury/repair and fibrosis. PDGFRα is restricted to Sca1+, CD45- mesenchymal progenitors. Fate-mapping experiments using inducible CreER/LoxP somatic recombination indicate that these progenitors expand in injury or DMD to become PDGFRα+, Col1a1-GFP+ matrix-forming fibroblasts, whereas muscle fibres do not become fibroblasts but are an important source of the PDGFRα ligand, PDGF-AA. While in toxin injury/repair of muscle PDGFRα, signalling is transiently up-regulated during the regenerative phase in the DMD model and in human DMD it is chronically overactivated. Conditional expression of the constitutively active PDGFRα D842V mutation in Collagen-I+ fibroblasts, during injury/repair, hindered the repair phase and instead promoted fibrosis. In DMD, treatment of mdx mice with crenolanib, a highly selective PDGFRα/ß tyrosine kinase inhibitor, reduced fibrosis, improved muscle strength, and was associated with decreased activity of Src, a downstream effector of PDGFRα signalling. These observations are consistent with a model in which PDGFRα activation of mesenchymal progenitors normally regulates repair of the injured muscle, but in DMD persistent and excessive activation of this pathway directly drives fibrosis and hinders repair. The PDGFRα pathway is a potential new target for treatment of progressive DMD. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Colágeno Tipo I/biosíntesis , Distrofia Muscular de Duchenne/patología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/fisiología , Animales , Bencimidazoles/farmacología , Bencimidazoles/uso terapéutico , Células Cultivadas , Modelos Animales de Enfermedad , Distrofina/genética , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibrosis , Masculino , Ratones Transgénicos , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Mutación , Piperidinas/farmacología , Piperidinas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Regeneración/efectos de los fármacos , Regeneración/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
2.
Mol Biol Cell ; 24(23): 3697-709, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24088570

RESUMEN

Yeast that naturally exhaust the glucose from their environment differentiate into three distinct cell types distinguishable by flow cytometry. Among these is a quiescent (Q) population, which is so named because of its uniform but readily reversed G1 arrest, its fortified cell walls, heat tolerance, and longevity. Daughter cells predominate in Q-cell populations and are the longest lived. The events that differentiate Q cells from nonquiescent (nonQ) cells are initiated within hours of the diauxic shift, when cells have scavenged all the glucose from the media. These include highly asymmetric cell divisions, which give rise to very small daughter cells. These daughters modify their cell walls by Sed1- and Ecm33-dependent and dithiothreitol-sensitive mechanisms that enhance Q-cell thermotolerance. Ssd1 speeds Q-cell wall assembly and enables mother cells to enter this state. Ssd1 and the related mRNA-binding protein Mpt5 play critical overlapping roles in Q-cell formation and longevity. These proteins deliver mRNAs to P-bodies, and at least one P-body component, Lsm1, also plays a unique role in Q-cell longevity. Cells lacking Lsm1 and Ssd1 or Mpt5 lose viability under these conditions and fail to enter the quiescent state. We conclude that posttranscriptional regulation of mRNAs plays a crucial role in the transition in and out of quiescence.


Asunto(s)
Ciclo Celular , Saccharomycetales/citología , Saccharomycetales/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Transcripción Genética , Adaptación Fisiológica/efectos de los fármacos , División Celular Asimétrica/efectos de los fármacos , Carbono/farmacología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , ADN Mitocondrial/genética , Citometría de Flujo , Patrón de Herencia/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/efectos de los fármacos , Saccharomycetales/metabolismo , Temperatura , Transcripción Genética/efectos de los fármacos
3.
DNA Repair (Amst) ; 12(11): 964-71, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24051050

RESUMEN

Reactive oxygen species generate ~20,000 oxidative lesions in the DNA of every cell, every day. Most of these lesions are located within nucleosomes, which package DNA in chromatin and impede base excision repair (BER). We demonstrated previously that periodic, spontaneous partial unwrapping of DNA from the underlying histone octamer enables BER enzymes to bind to oxidative lesions that would otherwise be sterically inaccessible. In the present study, we asked if these periodic DNA unwrapping events are frequent enough to account for the estimated rates of BER in vivo. We measured rates of excision of oxidative lesions from sites in nucleosomes that are accessible only during unwrapping episodes. Using reaction conditions appropriate for presteady-state kinetic analyses, we derived lesion exposure rates for both 601 and 5S rDNA-based nucleosomes. Although DNA unwrapping-mediated exposure of a lesion ~16NT from the nucleosome edge occurred ~7-8 times per minute, exposure rates fell dramatically for lesions located 10 or more NT further in from the nucleosome edge. The rates likely are too low to account for observed rates of BER in cells. Thus, chromatin remodeling, either BER-specific or that associated with transcription, replication, or other DNA repair processes, probably contributes to efficient BER in vivo.


Asunto(s)
Daño del ADN , ADN Glicosilasas/metabolismo , Reparación del ADN/genética , Nucleosomas/genética , Ensamble y Desensamble de Cromatina , ADN Glicosilasas/genética , Reparación del ADN/fisiología , ADN Ribosómico/genética , Histonas/química , Histonas/metabolismo , Humanos , Cinética , Nucleosomas/metabolismo , Estrés Oxidativo , Timina/análogos & derivados , Timina/metabolismo
4.
Mol Cell Biol ; 27(24): 8442-53, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17923696

RESUMEN

Oxidative lesions account for much of the spontaneously occurring DNA damage in normal cells and, left unrepaired, can be mutagenic or cytotoxic. We have investigated the capacity of purified human enzymes to initiate the base excision repair (BER) of oxidative lesions in model nucleosomes. In a construct where the minor groove of a thymine glycol lesion faced outward from the histone octamer, the human DNA glycosylase NTH1 (hNTH1) processed the lesion with nearly the same efficiency as in naked DNA. The hNTH1 reaction did not generate free DNA, indicating that the first step in BER occurred without irreversibly disrupting nucleosomes. Instead, lesion processing entailed the formation of nucleosome-hNTH1 ternary complexes that could be visualized in a gel mobility shift assay. These complexes contained both processed and unprocessed DNA. hNTH1 processing of lesions whose minor groove faced toward the histone octamer was poor at low hNTH1 concentrations but increased substantially as hNTH1 concentrations increased to nearly physiological levels. Additionally, an inward-facing lesion near the nucleosome edge was more efficiently processed than one closer to the nucleosome dyad. These observations suggest that access to sterically occluded lesions entails the partial, reversible unwrapping of DNA from the histone octamer, allowing hNTH1 to capture its DNA substrate when it is in an unwound state.


Asunto(s)
Daño del ADN , ADN Glicosilasas/metabolismo , Reparación del ADN , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Nucleosomas/enzimología , Estrés Oxidativo , Animales , Secuencia de Bases , Pollos , ADN Ribosómico/genética , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Timina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...